Towards Physical Applications of Holographic Duality

Lecture 1

John McGreevy, MIT

April 2012
My goal for these lectures is to give an efficient introduction to the following statement:

\[
\text{string theory may be useful for many-body problems.}
\]

The systems about which we can hope to say something using string theory have in common strong coupling. This makes our usual techniques basically useless.

goal for first lecture:
Make plausible the statement that AdS/CFT solves certain strongly-coupled quantum field theories in terms of simple (gravity) variables.
A word about string theory

String theory is a (poorly-understood) quantum theory of gravity which has a ‘landscape’ of many groundstates some of which look like our universe (3 + 1 dimensions, particle physics...) most of which don’t.

A difficulty for particle physics, a virtue for many-body physics: by AdS/CFT, each groundstate (with \(\Lambda < 0 \)) describes a universality class of critical behavior and its deformations. This abundance mirrors ‘landscape’ of many-body phenomena.

Note: tuning on both sides.
An opportunity to connect string theory and experiment.
A word about string theory

String theory is a (poorly-understood) quantum theory of gravity which has a ‘landscape’ of many groundstates some of which look like our universe (3 + 1 dimensions, particle physics...) most of which don’t.

A difficulty for particle physics, a virtue for many-body physics: by AdS/CFT, each groundstate (with $\Lambda < 0$) describes a universality class of critical behavior and its deformations
This abundance mirrors ‘landscape’ of many-body phenomena.

Note: tuning on both sides.
An opportunity to connect string theory and experiment.
New perspective on the structure of QFT: access to uncalculable things in $G(\omega, k, T)$ potentials for moving probes entanglement entropy uncalculable situations at strong coupling far from equilibrium in real time with a finite density of fermions
Outline

1. stringless motivation of the duality and basic dictionary
2. correlation functions in AdS;
 finite temperature and a little bit of transport
3. most promising application: systems with Fermi surfaces

Some references:
JM, *Holographic duality with a view toward many-body physics*, 0909.0518
Maldacena, *The gauge/gravity duality*, 1106.6073
Polchinski, *Introduction to Gauge/Gravity Duality*, 1010.6134
Hartnoll, *Quantum Critical Dynamics from Black Holes*, 0909.3553
Horowitz, Polchinski *Gauge/gravity duality*, gr-qc/0602037
Bold assertions

a) Some ordinary quantum many-body systems are actually quantum theories of gravity in extra dimensions (≡ quantum systems with dynamical spacetime metric).
a) Some ordinary quantum many-body systems are actually quantum theories of gravity in extra dimensions (≡ quantum systems with dynamical spacetime metric).

b) Some are even classical theories of gravity.
Bold assertions

a) Some ordinary quantum many-body systems are actually quantum theories of gravity in extra dimensions (≡ quantum systems with dynamical spacetime metric).

b) Some are even classical theories of gravity.

What can this mean?

Two hints:
1. The Renormalization Group (RG) is local in scale
2. Holographic Principle
Old-school universality

experimental universality (late 60s):
same critical exponents from very different systems.
Near a (continuous) phase transition (at $T = T_c$), scaling laws:
observables depend like power laws on the distance from the critical point.
e.g. ferromagnet near the Curie transition (let $t \equiv \frac{T_c - T}{T_c}$)

specific heat: $c_V \sim t^{-\alpha}$
magnetic susceptibility: $\chi \sim t^{-\gamma}$
Old-school universality

experimental universality (late 60s):
same critical exponents from very different systems.
Near a (continuous) phase transition (at $T = T_c$), scaling laws:
observables depend like power laws on the distance from the critical point.
e.g. ferromagnet near the Curie transition (let $t \equiv \frac{T_c - T}{T_c}$)

specific heat: $c_v \sim t^{-\alpha}$
magnetic susceptibility: $\chi \sim t^{-\gamma}$

water near its liquid-gas critical point:

specific heat: $c_v \sim t^{-\alpha}$
compressibility: $\chi \sim t^{-\gamma}$

with the same α, γ!
Renormalization group idea

This phenomenon is explained via the Kadanoff-Wilson idea:

$I_{\text{R}} \rightarrow UV$

$e.g.: \ H = \sum_{ij} J_{ij} S_i S_j$

Idea: measure the system with coarser and coarser rulers.
Let ‘block spin’ = average value of spins in block.
Renormalization group idea

This phenomenon is explained via the Kadanoff-Wilson idea:

\[H = \sum_{ij} J_{ij} S_i S_j \]

Idea: measure the system with coarser and coarser rulers.

Let ‘block spin’ = average value of spins in block.

Define a Hamiltonian \(H(u) \) for block spins so long-wavelength observables are the same.

\[\rightarrow \] a flow on the space of hamiltonians: \(H(u) \)
Fixed points of the RG are scale-invariant

This procedure (the sums) is hard to do in practice.

Many microscopic theories will flow to the same fixed-point \(\rightarrow \) same critical scaling exponents.

The fixed point theory is scale-invariant:
if you change your resolution you get the same picture back.
Hint 1: RG is local in scale

QFT = family of trajectories on the space of hamiltonians: $H(u)$ at each scale u, expand in symmetry-preserving local operators $\{O_A\}$

$$H(u) = \int d^{d-1}x \sum_A g_A(u) O_A(u, x)$$

[e.g. suppose the dof is a scalar field. then $\{O_A\} = \{ (\partial \phi)^2, \phi^2, \phi^4, \ldots \}$]

since $H(u)$ is determined by a step-by-step procedure,

$$u \partial_u g = \beta_g(g(u)) .$$

for each coupling g

locality in scale: β_g depends only on $g(u)$.

Def: near a fixed point, β_g is determined by the scaling dimension Δ of O:

$$O_A(x, u_1) \sim \left(\frac{u_1}{u_2} \right)^{\Delta_A} O_A(x, u_2)$$

ops of large Δ ($> d$, "irrelevant")

become small in IR (as $u \to 0$).
Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region $V \propto \text{area of } \partial V \text{ in planck units.}$ [\text{\textquoteleft t Hooft, Susskind 1992}]

recall: max entropy $S_{\text{MAX}} \sim \ln \dim \mathcal{H} \propto \#dof$.

in an ordinary system with local dofs $S_{\text{MAX}} \propto V$
Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region $V \propto \text{area of } \partial V$ in planck units. [’t Hooft, Susskind 1992]

recall: max entropy $S_{\text{MAX}} \sim \ln \dim \mathcal{H} \propto \# \text{dof}$.

in an ordinary system with local dofs $S_{\text{MAX}} \propto V$

to see that gravitating systems are different, we combine two facts:

fact 1: BH has an entropy $\propto \text{area of horizon}$ in planck units.

$$S_{\text{BH}} = \frac{A}{4G_N}$$

in $d+1$ spacetime dimensions, $G_N \sim \ell_p^{d-1} \quad \rightarrow \quad S_{\text{BH}} \text{ dimless.}$
Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region V \propto area of ∂V in planck units. [’t Hooft, Susskind 1992]

recall: max entropy $S_{\text{MAX}} \sim \ln \dim \mathcal{H} \propto \# \text{dof}$.

in an ordinary system with local dofs $S_{\text{MAX}} \propto V$

to see that gravitating systems are different, we combine two facts:

fact 1: BH has an entropy \propto area of horizon in planck units.

$$S_{\text{BH}} = \frac{A}{4G_N}$$

in $d + 1$ spacetime dimensions, $G_N \sim \ell_p^{d-1} \rightarrow S_{\text{BH}}$ dimless.

Whence fact 1?

Black holes have a temperature [Hawking] e.g. $T_H = \frac{1}{8\pi G_NM}$ for schwarzschild

Consistent thermodynamics requires us to assign them an entropy:

$dE_{\text{BH}} = T_H dS_{\text{BH}}$ for schwarzschild, $E_{\text{BH}} = M$, $A = 4\pi (4M^2G^2)$ gives (*)

‘Generalized 2d Law’: $S_{\text{total}} = S_{\text{ordinary stuff}} + S_{\text{BH}}$
Hint 2: Holographic principle, cont’d

fact 2: dense enough matter collapses into a BH

Idea [Bekenstein, 1976]: consider a volume V with area A in a flat region of space. Suppose the contrary: given a configuration with $S > S_{BH} = A / 4G_N$ but $E < E_{BH}$ (biggest BH fittable in V) then: throw in junk (increases S and E) until you make a BH. S decreased, violating 2d law. Punchline: gravity in $d + 2$ dimensions has the same number of degrees of freedom as a QFT in fewer ($d + 1$) dimensions.
Hint 2: Holographic principle, cont’d

fact 2: dense enough matter collapses into a BH
$1 + 2 \rightarrow$ in a gravitating system,
max entropy in a region of space =
entropy of the biggest black hole that fits.

$$S_{\text{max}} = S_{\text{BH}} = \frac{1}{4G_N} \times \text{horizon area}$$

Idea [Bekenstein, 1976]: consider a volume V with area A in a flat region of space.
suppose the contrary: given a configuration with
$S > S_{\text{BH}} = \frac{A}{4G_N}$ but $E < E_{\text{BH}}$ (biggest BH fittable in V)
then: throw in junk (increases S and E) until you make a BH.
S decreased, violating 2d law.
punchline: gravity in $d + 2$ dimensions has the same number of degrees of freedom as a QFT in fewer $(d + 1)$ dimensions.
Combining these hints, we conjecture:

gravity
in a space with an extra dim whose coord is the energy scale \equiv QFT

To make this more precise, we consider a simple case (AdS/CFT) [Maldacena, 1997] in more detail.
AdS/CFT

A relativistic field theory, scale invariant ($\beta_g = 0$ for all nonzero g)

$x^\mu \rightarrow \lambda x^\mu \quad \mu = 0...d - 1, \quad u \rightarrow \lambda^{-1} u$

u is the energy scale, RG coordinate

with d-dim’l Poincaré symmetry: Minkowski $ds^2 = -dt^2 + d\vec{x}^2$
AdS/CFT

A relativistic field theory, scale invariant \((\beta_g = 0\) for all nonzero \(g\))

\[x^\mu \rightarrow \lambda x^\mu \quad \mu = 0\ldots d - 1, \quad u \rightarrow \lambda^{-1} u \]

\(u\) is the energy scale, RG coordinate

with \(d\)-dim’l Poincaré symmetry: Minkowski \(ds^2 = -dt^2 + d\vec{x}^2\)

Most gen’l \(d + 1\) dim’l metric w/ Poincaré plus scale inv.

\[AdS_{d+1} : \quad ds^2 = \frac{u^2}{L^2} (-dt^2 + d\vec{x}^2) + L^2 \frac{du^2}{u^2} \quad L \equiv \text{‘AdS radius’} \]

If we rescale space and time and move in the radial dir, the geometry looks the same (isometry).

copies of Minkowski space of varying ‘size’.

(Note: this metric also has conformal symmetry \(SO(d, 2)\)

∃ gravity dual \(\implies\) “Polchinski’s Theorem” for any \(d\).)

another useful coordinate:

\[z \equiv \frac{L^2}{u} \quad ds^2 = L^2 \frac{-dt^2 + d\vec{x}^2 + dz^2}{z^2} \]

\([u] = \text{energy}, [z] = \text{length} \quad (c = \hbar = 1 \text{ units}).\]
The extra (‘radial’) dimension is the resolution scale. (The bulk picture is a hologram.)

preliminary conjecture:

\[\text{gravity on } \text{AdS}_{d+1} \text{ space } \cong \text{CFT}_d \]
The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)
preliminary conjecture:

$$\text{gravity on } AdS_{d+1} \text{ space } \equiv \text{CFT}_d$$

crucial refinement:
in a gravity theory the metric fluctuates.

\rightarrow what does ‘gravity in AdS’ mean ?!
Geometry of AdS continued

AdS has a boundary (where $u \to \infty$, $z \to 0$, ‘size’ of Mink blows up).
Massless particles reach it in finite time.
\implies must specify boundary conditions there.
The fact that the geometry is AdS near there is one of these boundary conditions.
Different from Minkowski space or (worse) de Sitter:

\[\text{AdS} \quad \text{Mink} \quad \text{dS} \]

(time

rescaled

space

\(\text{asymptotic boundary}\))

so: some $\text{CFT}_d \overset{?}{=} \text{gravity on asymptotically } AdS_{d+1} \text{ space}$
(we will discuss the meaning of this ‘$\overset{?}{=}$’ much more)
Preview of dictionary

“bulk” \leftrightarrow “boundary”

fields in AdS_{d+1} \leftrightarrow operators in CFT

(Note: operators in CFT don’t make particles.)

mass \leftrightarrow scaling dimension

$$m^2 L^2 = \Delta(\Delta - d)$$

a simple bulk theory with a small # of light fields \leftrightarrow CFT with a small # of ops of small Δ (like rational CFT)
What to calculate

some observables of a QFT (Euclidean for now):

vacuum correlation functions of local operators:

\[\langle O_1(x_1)O_2(x_2) \cdots O_n(x_n) \rangle \]

standard trick: make a generating functional \(Z[J] \) for these correlators by perturbing the action of the QFT:

\[
\mathcal{L}(x) \rightarrow \mathcal{L}(x) + \sum_A J_A(x)O_A(x) \equiv \mathcal{L}(x) + \mathcal{L}_J(x)
\]

\[Z[J] = \langle e^{-\int \mathcal{L}_J} \rangle_{CFT} \]

\(J_A(x) \): arbitrary functions (sources)

\[\langle \prod_n O_n(x_n) \rangle = \prod_n \left. \frac{\delta}{\delta J_n(x_n)} \ln Z \right|_{J=0} \]

Hint: \(\mathcal{L}_J \) is a UV perturbation – near the boundary, \(z \to 0 \)
Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

\[Z_{QFT}[\text{sources}] = Z_{\text{quantum gravity}}[\text{boundary conditions at } u \to \infty] \]
Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

\[Z_{QFT}[\text{sources}] = Z_{\text{quantum gravity}}[\text{boundary conditions at } u \to \infty] \approx e^{-S_{\text{bulk}}[\text{boundary conditions at } u \to \infty]} |_{\text{saddle of } S_{\text{bulk}}} \]

\[J = \phi_0 \]

"\[\phi \stackrel{u \to \infty}{\to} \phi_0 \]"
Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

\[Z_{QFT}[\text{sources}] = Z_{\text{quantum gravity}}[\text{boundary conditions at } u \to \infty] \]
\[\approx e^{-S_{\text{bulk}}[\text{boundary conditions at } u \to \infty]}|_{\text{saddle of } S_{\text{bulk}}} \]
\[J = \phi_0 \quad \text{"} \phi \xrightarrow{u \to \infty} \phi_0 \text{"} \]

What’s \(S_{\text{bulk}} \)? AdS solves the EOM for
\[S_{\text{bulk}} = \frac{1}{\# G_N} \int d^{d+1}x \sqrt{g} \left(\mathcal{R} - 2\Lambda + \ldots \right) \]
(... = fields which vanish in groundstate, more irrelevant couplings.)

expansion organized by decreasing relevance
\[\Lambda = -\frac{d(d-1)}{2L^2} \quad \text{note tuning!} \]
\[\mathcal{R} \sim \partial^2 g \implies G_N \sim \ell_p^{d-1} \]
gravity is classical if \(L \gg \ell_p \).

This is what comes from string theory (when we can tell)
at low \(E \) and for \(\frac{1}{L} \ll \frac{1}{\sqrt{\alpha'}} \equiv \frac{1}{\ell_s} \quad (\frac{1}{\alpha'} = \text{string tension}) \)
(One basic role of string theory here: fill in the dots.)
Conservation of evil

large AdS radius $L \leftrightarrow$ strong coupling of QFT

(avoides an immediate disproof – obviously a perturbative QFT isn’t usefully an extra-dimensional theory of gravity.)

a special case of a

Useful principle (Conservation of evil): different weakly-coupled descriptions have non-overlapping regimes of validity.

strong/weak duality: hard to check, very powerful

Info goes both ways: once we believe the duality, this is our best definition of string theory.
Holographic counting of degrees of freedom

[Susskind-Witten]

\[
S_{\text{max}} = \frac{\text{area of boundary}}{4G_N} \quad ? \quad \# \text{ of dofs of QFT}
\]
Holographic counting of degrees of freedom

[Susskind-Witten]

\[S_{\text{max}} = \frac{\text{area of boundary}}{4G_N} \quad ? \quad \# \text{ of dofs of QFT} \]

\[\text{yes : } \infty = \infty \]

need to regulate two divergences: dofs at every point in space (UV) (\# dofs \equiv N^2), spread over \(\mathbb{R}^{d-1} \) (IR).

counting in QFT}_d:

\[S_{\text{max}} \sim \left(\frac{R}{\epsilon} \right)^{d-1} N^2 \]
counting in AdS_{d+1}: at fixed time: $ds^2_{\text{AdS}} = L^2 \frac{dz^2 + d\vec{x}^2}{z^2}$

$$A = \int_{\text{bdy}, \, z \, \text{fixed}} \sqrt{g} d^{d-1}x = \int_{\mathbb{R}^{d-1}} d^{d-1}x \left(\frac{L}{z} \right)^{d-1} \bigg|_{z \to 0}$$

$$A = \int_{0}^{R} d^{d-1}x \frac{L^{d-1}}{z^{d-1}} \bigg|_{z = \epsilon} = \left(\frac{RL}{\epsilon} \right)^{d-1}$$

The holographic principle then says that the maximum entropy in the bulk is

$$\frac{A}{4G_N} \sim \frac{L^{d-1}}{4G_N} \left(\frac{R}{\epsilon} \right)^{d-1}.$$

$$\frac{L^{d-1}}{G_N} = N^2$$

lessons:

1. parametric dependence on R checks out.
2. gravity is classical if QFT has lots of dofs/pt: $N^2 \gg 1$

$$Z_{\text{QFT}}[\text{sources}] \approx e^{-N^2 I_{\text{bulk}}[\text{boundary conditions at } r \to \infty]} \bigg|_{\text{extremum of } I_{\text{bulk}}}$$

classical gravity (sharp saddle) \leftrightarrow many dofs per point, $N^2 \gg 1$
Confidence-building measures

Why do we believe this enough to try to use it to do physics?

1. Many detailed checks in special examples
 examples: relativistic gauge theories (fields are $N \times N$ matrices), with extra symmetries (conformal invariance, supersymmetry)
 checks: ‘BPS quantities,’ integrable techniques, some numerics

2. Sensible answers for physics questions
 rediscoveries of known physical phenomena: e.g. color confinement, chiral symmetry breaking, thermo, hydro, thermal screening, entanglement entropy, chiral anomalies, superconductivity, ...
 Gravity limit, when valid, says who are the correct variables.
 Answers questions about thermodynamics, transport, RG flow, ...
 in terms of geometric objects.

3. Applications to quark-gluon plasma (QGP)
 benchmark for viscosity, hard probes of medium, approach to equilibrium
Simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

\[ds^2 = w(z)^2 \left(-dt^2 + d\vec{x}^2 \right) + \frac{dz^2}{z^2} \]

CFT: bulk geometry goes on forever, warp factor \(w(z) = \frac{l}{z} \to 0 \):
Simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

$$ds^2 = w(z)^2 \left(-dt^2 + d\vec{x}^2 \right) + \frac{dz^2}{z^2}$$

CFT: bulk geometry goes on forever, warp factor $w(z) = \frac{L}{z} \rightarrow 0$:

t, \vec{x} are the field theory time and space coordinates.

$$\text{(size)}_{FT} = \frac{1}{w(z)} \text{(proper size)}$$

$$E_{FT} \sim i\partial_t = w(z)E_{\text{proper}}$$
The role of the warp factor, cont’d

Model with a gap:

geometry ends smoothly, warp factor \(w(z) \) has a min.

if IR region is missing,
no low-energy excitations, energy gap.
Appendix: counting powers of N^2
large N counting

consider a matrix field theory
Φ^b_a is a matrix field. $a, b = 1..N$. other labels (e.g. spatial position, spin) are suppressed.

$$\mathcal{L} \sim \frac{1}{g^2} \text{Tr} \left((\partial \Phi)^2 + \Phi^2 + \Phi^3 + \Phi^4 + \ldots \right)$$

here e.g. $(\Phi^2)^c_a = \Phi^b_a \Phi^c_b$,
the interactions are invariant under the $U(N)$ symmetry
$\Phi \rightarrow U^{-1} \Phi U$
't Hooft counting

double-line notation:

\[\langle \tilde{\Phi}_b^a \tilde{\Phi}_c^d \rangle \propto g^2 \delta_c^a \delta_b^d \equiv g^2 \delta_a^b \delta_d^c \]

\[\propto g^{-2} \]
topology of graphs

\[\propto g^2 N = \lambda N^0 \]

Figure: Non-planar (but still oriented!) graph that contributes to the vacuum→vacuum amplitude.

If \(E = \# \text{ of propagators}, \ V = \# \text{ of vertices}, \) and \(F = \# \text{ of index loops}, \)
a diagram contributes \(N^{F-E+V} \lambda^{E-V} \).

\[F - E + V = \chi(\text{surface}) = 2 - 2h - b \]

(\(h = \text{number of handles}, \ b = \text{number of boundaries} \))
topology of graphs, cont’d

the effective action (the sum over connected vacuum-to-vacuum diagrams) has the expansion:

$$\ln Z = \sum_{h=0}^{\infty} N^{2-2h} \sum_{\ell=0}^{\infty} c_{\ell,h} \lambda^\ell = \sum_{h=0}^{\infty} N^{2-2h} \mathcal{S}_h(\lambda)$$

[’t hooft]: $1/N$ as a small parameter, string expansion. $1/N$ suppresses splitting and joining of strings.

e.g.

concrete point: at large N, $\ln Z \sim N^2$.
$\mathcal{O}(x) = c(k, N) \text{Tr}(\Phi_1(x) \ldots \Phi_k(x))$

Disconnected diagram contributing to the correlation function

\[\langle \text{Tr}(\Phi^4) \text{Tr}(\Phi^4) \rangle \sim N^2 \]

Connected diagram contributing to the correlation function \[\langle \text{Tr}(\Phi^4) \text{Tr}(\Phi^4) \rangle \]

goes like N^0