On the optimal compression of sets in P, NP, P/poly, PSPACE/poly

Marius Zimand

Towson University

CCR 2012- Cambridge
The language compression problem

- If A is computably enumerable, then for every $x \in A$ of length n
 \[
 C(x) \leq \log |A^\leq n| + O(\log n)
 \]

- description of x: index of x in an enumeration of $A^\leq n$.
The language compression problem

- If A is computably enumerable, then for every $x \in A$ of length n

 $$C(x) \leq \log |A^=n| + O(\log n)$$

- description of x: index of x in an enumeration of $A^=n$.

- But enumeration is slow.

- Is there a time-bounded Kolmogorov complexity version of the above fact?
For every set A, for every $x \in A$ of length n,

$$C^A(x) \leq \log |A^n| + O(\log n)$$
For every set A, for every $x \in A$ of length n,

$$C_A(x) \leq \log |A^n| + O(\log n)$$

Is there a polynomial-time version of the above fact?
Distinguishing complexity [Sipser 83]

Informal Definition

\(CD_t(x) = \) length of the shortest program that accepts \(x \) and only \(x \) and runs in \(t(|x|) \) time.

Formal Definition

\(CD_t(x) = |p|, p \) is the shortest program such that

\[U(p, x) = \text{YES}, \quad U(p, y) = \text{NO}, \quad \text{for all } y \neq x \]

\(U(p, y) \) halts in \(t(|y|) \) steps, \(\text{for all } y \) (\(U \) is a universal Turing machine)

\(CD_t, A(x) - U \) uses oracle \(A \).

\(CND_t, A(x) - U \) is nondeterministic,

\(CAMD_t, A(x) - U \) is Arthur-Merlin machine \(\) (randomized + nondeterministic),

\(CBPD_t, A - U \) is randomized with bounded error.
Informal Definition

\[CD^t(x) = \text{length of the shortest program that accepts } x \text{ and only } x \text{ and runs in } t(|x|) \text{ time.} \]
Distinguishing complexity [Sipser 83]

Informal Definition

\[\text{CD}^t(x) = \text{length of the shortest program that accepts } x \text{ and only } x \text{ and runs in } t(|x|) \text{ time.} \]

Formal Definition

\[\text{CD}^t(x) = |p|, \ p \text{ is the shortest program such that} \]

\[U(p, x) = \text{YES}, \]
\[U(p, y) = \text{NO, for all } y \neq x \]
\[U(p, y) \text{ halts in } t(|y|) \text{ steps, for all } y \]

(U is a universal Turing machine)
Informal Definition

\[CD^t(x) = \text{length of the shortest program that accepts } x \text{ and only } x \text{ and runs in } t(|x|) \text{ time.} \]

Formal Definition

\[CD^t(x) = |p|, \ p \text{ is the shortest program such that}
\]

\[
\begin{align*}
U(p, x) & = \text{YES,} \\
U(p, y) & = \text{NO, for all } y \neq x \\
U(p, y) & \text{ halts in } t(|y|) \text{ steps, for all } y
\end{align*}
\]

\[(U \text{ is a universal Turing machine)}\]

\[CD^{t,A}(x) - U \text{ uses oracle } A. \]

\[CND^{t,A}(x) - U \text{ is nondeterministic, } CAMD^{t,A}(x) - U \text{ is Arthur-Merlin machine} \]

\[\text{(randomized + nondeterministic), } CBPD^{t,A} - U \text{ is randomized with bounded error.} \]
What is known:

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$

$$\text{CD}^{\text{poly}, A}(x) \leq 2 \log |A^{=n}| + O(\log n)$$
What is known:

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$

$$CD^{\text{poly}, A}(x) \leq 2 \log |A| + O(\log n)$$

[Buhrman, Laplante, Miltersen, 2000]: For some sets A, 2 is necessary.
What is known (cont.):

If we allow nonuniformity

[Sipser, 1983] \(\forall A, \exists \) advice \(w \) of length \(\text{poly}(n) \), \(\forall x \in A \)

\[
\text{CD}_{\text{poly}, A}(x | w) \leq \log |A^{=}n| + O(\log n)
\]
What is known (cont.):

If we allow nonuniformity

[Sipser, 1983] \(\forall A, \exists \text{ advice } w \text{ of length } \text{poly}(n), \forall x \in A \)

\[CD_{\text{poly},A}(x \mid w) \leq \log |A^n| + O(\log n) \]

If we allow some error:

[Buhrman, Fortnow, Laplante, 2001]

\(\forall A, \forall \epsilon, \forall x \in A^n \text{ except } \epsilon \text{ fraction}, \)

\[CD_{\text{poly},A}(x) \leq \log |A^n| + \text{poly}(\log n/\epsilon) \]
What is known (cont.):

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005]
∀A, ∀x ∈ A

\[CND_{\text{poly},A}^n(x) \leq \log |A^n| + O((\sqrt{\log |A^n|} + \log n) \log n) \]
What is known (cont.):

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005]
\[\forall A, \forall x \in A \]
\[\text{CND}^{\text{poly}, A}(x) \leq \log |A^=n| + O((\sqrt{\log |A^=n|} + \log n) \log n) \]

If we allow randomization + nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005]
\[\forall A, \forall x \in A \]
\[\text{CAMD}^{\text{poly}, A}(x) \leq \log |A^=n| + O(\log^3 n) \]
What is known (cont.):

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005]
\[\forall A, \forall x \in A \]
\[\text{CND}^{\text{poly},A}(x) \leq \log |A^=n| + O((\sqrt{\log |A^=n|} + \log n) \log n) \]

If we allow randomization + nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005]
\[\forall A, \forall x \in A \]
\[\text{CAMD}^{\text{poly},A}(x) \leq \log |A^=n| + O(\log^3 n) \]

If we allow only randomization, compression can fail

[Buhrman, Lee, van Melkebeek, 2005]
\[\forall n, t, k < c_1 n - c_2 \log t, t, \exists A \text{ with } \log |A^=n| = k, \forall x \in A \]
\[\text{CBPD}^{t,A}(x) \geq 2 \log |A^=n| - c_3 \]
QUESTION: For what sets A, can we get optimal compression:

$$\forall x \in A^n, \ CD_{\text{poly},A}(x) \leq \log |A^n| + O(\log n). \quad (*)$$
QUESTION: For what sets A, can we get optimal compression:

$$\forall x \in A^n, \text{CD}^{\text{poly},A}(x) \leq \log |A^n| + O(\log n). \quad (*)$$

ANSWER: Using a reasonable assumption, (*) holds for every A in PSPACE/poly.
Last year (FCT’2011), I used a method using 2 steps.

Step 1: non-explicit extractors made partially explicit using Nisan pseudo-random generator for constant-depth circuits.
Step 2: Nisan-Wigderson pseudo-random generator assuming a certain hardness assumption.

Vinodchandran suggested the following simpler proof for Step 1: extractors are replaced by 2-wise independent distributions.
PROOF for $A \in \text{P/poly}$

$\text{P/poly} = \text{class of sets decidable in polynomial time with polynomial advice.}$
$= \text{class of sets decidable by polynomial-size circuits.}$
PROOF for $A \in \text{P/poly}$

$\text{P/poly} = \text{class of sets decidable in polynomial time with polynomial advice.}$

$\quad = \text{class of sets decidable by polynomial-size circuits.}$

Let $A \in \text{P/poly}$ and $x \in A^{=n}$.

Let $k = \lceil \log |A^{=n}| \rceil$.
PROOF for \(A \in \text{P/poly} \)

\(\text{P/poly} = \text{class of sets decidable in polynomial time with polynomial advice.} \)

\(= \text{class of sets decidable by polynomial-size circuits.} \)

Let \(A \in \text{P/poly} \) and \(x \in A^n \).

Let \(k = \lceil \log |A^n| \rceil \).

Suppose we find \(h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1} \), poly-time computable given \(|h| \) bits of information, which isolates \(x \) in \(A \):

\[\forall y \in A^n \setminus \{x\}, h(y) \neq h(x). \]

Then, \(h \) and \(h(x) \) distinguishes \(x \) among the strings in \(A^n \).
PROOF for $A \in \mathbb{P}/\mathbb{poly}$

$\mathbb{P}/\mathbb{poly} =$ class of sets decidable in polynomial time with polynomial advice.

$= \text{class of sets decidable by polynomial-size circuits.}$

Let $A \in \mathbb{P}/\mathbb{poly}$ and $x \in A^{=n}$.

Let $k = \lceil \log |A^{=n}| \rceil$.

Suppose we find $h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1}$, poly-time computable given $|h|$ bits of information, which isolates x in A:

$$\forall y \in A^{=n} \setminus \{x\}, h(y) \neq h(x).$$

Then, h and $h(x)$ distinguishes x among the strings in $A^{=n}$.

$$\text{CD}^{\mathbb{poly}, A}(x) \leq (k + 1) + |h| + O(\log n) = \log |A^{=n}| + |h| + O(\log n).$$
PROOF for $A \in \text{P/poly}$

P/poly = class of sets decidable in polynomial time with polynomial advice.
 = class of sets decidable by polynomial-size circuits.

Let $A \in \text{P/poly}$ and $x \in A^n$.

Let $k = \lceil \log |A^n| \rceil$.

Suppose we find $h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1}$, poly-time computable given $|h|$ bits of information, which isolates x in A:

$$\forall y \in A^n \setminus \{x\}, h(y) \neq h(x).$$

Then, h and $h(x)$ distinguishes x among the strings in A^n.

$$\text{CD}^{\text{poly}, A}(x) \leq (k + 1) + |h| + O(\log n) = \log |A^n| + |h| + O(\log n).$$

To finish the proof, I need h that isolates x in A and $|h| = O(\log n)$.

Problem

\[k = \lceil \log |A^{-n}| \rceil, \ x \in A^{-n}. \]

Find \(h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1} \) that isolates \(x \) and \(|h| \) is \(O(\log n) \).
PROOF for $A \in \text{P/poly}$ (cont.)

Problem

$k = \lceil \log |A^{-n}| \rceil$, $x \in A^{-n}$.
Find $h : \{0, 1\}^n \to \{0, 1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

If we choose h randomly,

$$\text{Prob}_h[h(x) = h(y)] = \frac{1}{2^{k+1}} \quad \text{(for any fixed } y \neq x)$$

$$\text{Prob}_h[\exists y \in A^{-n} \setminus \{x\}, h(x) = h(y)] \leq 2^k \cdot \frac{1}{2^{k+1}} = \frac{1}{2}$$

So, with probability $\geq 1/2$, h isolates x.
But $|h| = 2^n \cdot (k + 1)$.
Problem

\[k = \lceil \log |A^{-n}| \rceil, \ x \in A^{-n}. \]

Find \(h : \{0, 1\}^n \to \{0, 1\}^{k+1} \) that isolates \(x \) and \(|h| \) is \(O(\log n) \).

STEP 1 (reduction using 2-wise distributions):

- \(h \) only needs to be 2-wise independent.
Problem

\[k = \lceil \log |A^{=n}| \rceil, \ x \in A^{=n}. \]

Find \(h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1} \) that isolates \(x \) and \(|h| \) is \(O(\log n) \).

STEP 1 (reduction using 2-wise distributions):

- \(h \) only needs to be 2-wise independent.
- Take \(h \) a random linear function (i.e., a random \(k \)-by-\(n \) matrix).
- \(h \) is 2-wise independent.
PROOF for $A \in \text{P/poly}$ (cont.)

Problem

$k = \lceil \log |A^{-n}| \rceil$, $x \in A^{-n}$.
Find $h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take h a random linear function (i.e., a random k-by-n matrix).
- h is 2-wise independent.
- With probability $\geq 1/2$, h isolates x.
- $|h| = n \cdot k$.
PROOF for $A \in \text{P/poly}$ (cont.)

Problem

\[k = \lceil \log |A^n| \rceil, \ x \in A^n. \]

Find $h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take h a random linear function (i.e., a random k-by-n matrix).
- h is 2-wise independent.
- With probability $\geq 1/2$, h isolates x.
- $|h| = n \cdot k$.
- We have reduced $|h|$ from $2^n \cdot (k + 1)$ to $n \cdot k$.
Problem

$k = \lceil \log |A^{=}n| \rceil$, $x \in A^{=}n$.
Find $h : \{0, 1\}^n \rightarrow \{0, 1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 2 (reduction using pseudo-random generators - p.r.g.):

PROOF for $A \in P/poly$ (cont.)
PROOF for $A \in P/poly$ (cont.)

Problem

$k = \lceil \log |A^n| \rceil$, $x \in A^n$.
Find $h : \{0, 1\}^n \to \{0, 1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 2 (reduction using pseudo-random generators - p.r.g.):

- A p.r.g. that fools a class of sets C;

 $$g : \{0, 1\}^{c \log m} \to \{0, 1\}^m$$
 computable in poly. time in m
 such that for every $B \in C$

 $$\text{prob}_{s \in \{0, 1\}^{c \log m}}[g(s) \in B] \approx \epsilon \text{ prob}_{u \in \{0, 1\}^m}[u \in B].$$

- No set in C can distinguish between an output of g and a uniformly generated string.
PROOF for $A \in P/poly$ (cont.)

$B = \{ h \mid h \text{ linear and } h \text{ does not isolate } x \}$
PROOF for $A \in \text{P/poly}$ (cont.)

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- B is in NP/poly.

Suppose we have a p.r.g. $g : \{0,1\}^c \log n \rightarrow \{0,1\}^kn$ that fools NP/poly sets. g fools B. B is large, so for many s, $g(s) \in B$. For some seed s (actually for many seeds), $g(s)$ is an h that isolates x. Thus we can compute h from s which has $O(\log n)$ bits. This is exactly what we need.
PROOF for $A \in P/poly$ (cont.)

- $B = \{ h \mid h$ linear and h does not isolate $x\}$
- B is in $NP/poly$.
- Suppose we have a p.r.g. $g : \{0,1\}^{c \log n} \rightarrow \{0,1\}^{kn}$ that fools $NP/poly$ sets.
- g fools B.
PROOF for $A \in P/poly$ (cont.)

- $B = \{ h \mid h \text{ linear and } h \text{ does not isolate } x \}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g : \{0, 1\}^{c \log n} \rightarrow \{0, 1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many s, $g(s) \in \overline{B}$.
PROOF for $A \in \text{P/poly}$ (cont.)

- $B = \{ h \mid h \text{ linear and } h \text{ does not isolate } x \}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g : \{0, 1\}^{c \log n} \rightarrow \{0, 1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many s, $g(s) \in \overline{B}$.
- For some seed s (actually for many seeds), $g(s)$ is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.
PROOF for $A \in \text{P/poly}$ (cont.)

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g : \{0, 1\}^{c \log n} \rightarrow \{0, 1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many s, $g(s) \in \overline{B}$.
- For some seed s (actually for many seeds), $g(s)$ is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.
- This is exactly what we need.
Pseudo random generators

- How do we get a p.r.g.?
How do we get a p.r.g.? Start with a function f computable in $E = \bigcup_c \text{DTIME}[2^{cn}]$ that is hard.

How hard? Depends on what sets do we want the p.r.g. to fool.

Assumption H: There exists a function f computable in E that for some $\epsilon > 0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.

$H \Rightarrow$ p.r.g. that fools NP/poly \Rightarrow sets in P/poly can be compressed optimally.
Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c \text{DTIME}[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon > 0$.

Assumption H: There exists a function f computable in E that for some $\epsilon > 0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.

H \Rightarrow p.r.g. that fools NP/poly \Rightarrow sets in P/poly can be compressed optimally.
Pseudo random generators

How do we get a p.r.g.?

Start with a function f computable in $E = \bigcup_c \text{DTIME}[2^{cn}]$ that is **hard**.

How hard? Depends on what sets do we want the p.r.g. to fool.

To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon > 0$.

The output of f is somewhat unpredictable, but the p.r.g. requirements are much more demanding.

Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from f one can construct a p.r.g g that fools NP/poly.
Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c \text{DTIME}[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon > 0$.
- The output of f is somewhat unpredictable, but the p.r.g. requirements are much more demanding.
- Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from f one can construct a p.r.g g that fools NP/poly.
- Assumption H: There exists a function f computable in E that for some $\epsilon > 0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.
- $H \Rightarrow$ p.r.g. that fools NP/poly \Rightarrow sets in P/poly can be compressed optimally.
Assumption H: There exists a function f computable in E that for some $\epsilon > 0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.

Theorem
Assume H. For any set A in $P/poly$, there exists a polynomial p such that for every $x \in A$

$$CD^{p,A}(x) \leq \log |A^{-n}| + O(\log n)$$
Similar results for sets in P, NP, Σ^p_k, PSPACE/poly.
Similar results for sets in P, NP, Σ^P_k, PSPACE/poly.

For PSPACE/poly

Theorem

Assume there exists a function f computable in E but not in \(\text{DSPACE}[2^{o(n)}] \).

For any set A in PSPACE/poly, there exists a polynomial p such that for every $x \in A$

$$CD^{p,A}(x) \leq \log |A^{=n}| + O(\log n)$$
Pseudo-random generators based on similar assumptions have been used before in resource-bounded Kolmogorov complexity.

(Antunes, Fortnow, 2009) If hardness assumption holds, then \(m^p(x) = 2^{-C^p(x)} \) is universal among P-samplable distributions.

For any P-samplable distribution \(\sigma \), there is a polynomial \(p \) such that \(C^p(x) \leq \log 1/\sigma(x) + O(\log n) \).

(Antunes, Fortnow, Pinto, Souza, 2007) Computational depth cannot grow fast.
How to show $P \neq NP$

Find a set A such that

(1) $CD_{\text{poly}} A(x) \geq 2 \log |A| = n$, for some $x \in A$ (like [Buhrman, Laplante, Miltersen])

(2) $CD_{\text{poly}} \Sigma_p^k \oplus A(x) \leq (2 - \epsilon) \log |A| = n$, for all $x \in A$

Then, $\Sigma_p^k \neq P$.

It is reasonable to try A in the Polynomial Hierarchy.

But $PH \subseteq PSPACE$, so (1) will not succeed.

So look for A outside $PSPACE$.
How to show $P \neq NP$

Find a set A such that

(1) $\text{CD}^{\text{poly},A}(x) \geq 2 \log |A^n|$, for some $x \in A$ (like [Buhrman,Laplante,Miltersen])

(2) $\text{CD}^{\text{poly},\Sigma^p_k \oplus A}(x) \leq (2 - \epsilon) \log |A^n|$, for all $x \in A$

Then, $\Sigma^p_k \neq P$.
How to show $\text{P} \neq \text{NP}$

Find a set A such that

(1) $\text{CD}^{\text{poly},A}(x) \geq 2 \log |A|=n|$, for some $x \in A$ (like [Buhrman,Laplante, Miltersen])

(2) $\text{CD}^{\text{poly},\Sigma^p_k \oplus A}(x) \leq (2 - \epsilon) \log |A|=n|$, for all $x \in A$

Then, $\Sigma^p_k \neq \text{P}$.

It is reasonable to try A in the Polynomial Hierarchy.

But $\text{PH} \subseteq \text{PSPACE}$, so (1) will not succeed.

So look for A outside PSPACE.
Thank you.