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Fluid Flow Evolution

Fluid flow evolution
We consider a homogeneous, incompressible fluid in R*:
VXxu=w

velocity field u=u(X,t):{ V-u=0 in R®
u=0as X — o0

@ Fluid motion is governed by:

. Ou 1
Euler equations — +((u-V)u=--Vp
ot P
@ Under Euler equations topology is conserved.
o Vortex circulation I' = constant;
1
o Kinetic energy E = 5/}/ |u\2dV = constant;
A%
o Kinetic Helicity H :/ u-wdV = constant;

%
¢ topological quantities knot type, linking number, crossing number ...
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Fluid Flow Evolution

Biot-Savart Law

@ Let ¥; be a smooth space curve given by:

o [ X(s,0) =X (s)
YUl sef0,L] = R?
@ The intrinsic reference on %; is given by the Frenet frame {ﬂﬁ,f)}:
: X b
t =X’ (: = —
(s,2) s
{,//
n=—
c
=t' xn

@ Let identify %; with a thin vortex filament of circulation T.
The vortex line moves with a self induced velocity:

Biot-Savart (BS) law u(x,t) = 4£ 7{ st J
T J <6, X — S
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Fluid Flow Evolution

Vortex Filament Motion Under the Localized Induction Approximation (LIA)

The Biot-Savart law can be simplified according to the following:

w = wot wo = constant
R . S
Asymptotic theory : e o>1 thin tube approximation
1X (1) = X(s5)| =0(1) no self-intersection
|si — 55
4
. oX T AV ) X
LIA | =X(s,t)=——=—Ind X' xX"=—1 b
aw urra (s,t) 9% = in né X' x in né c

Under LIA the following quantities are conserved:

Eoc?(czds, Hm%czrds, Wroc}l{c2ds, Twoc%rds
J& & Je J& )
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Torus Knots and Unknots

Torus Knots

Theorem (Massey, 1967)

A closed, non-self intersecting curve embedded in a torus 11, that cuts a meridian at

p > 1 points and a longitude at q > 1 points (p and q relatively prime integers), is a
non-trivial knot .7, 4, with winding number w = q/p.

Trefoil knot

%,2 "’29/:”3 q=39’:=2

@ p > 1 longitudinal wraps and g > 1 meridional wraps;
@ For given p, ¢ (p,q coprimes) 9, 4 ~ J,,, topologically equivalent.
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Torus Unknots

o Casep=1lorg=1:

Unknots Ui ~ Um,y ~ U (circle) J
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Torus Knots and Unknots

Vortex Torus Knot Solution Under LIA

Theorem (Kida, 1981)

Let %, denote the embedding of a knotted vortex filament in an ideal fluid. If JZ,
evolves under LIA, then there exist a class of steady solutions in the shape of torus
knots %, = 7, 4 in terms of incomplete elliptic integrals.

@ Solution .7, 4 in explicit analytic closed form, based on linear perturbation from
the circular solution %4 of NLSE:

r=ro+e€r T =10 + €esin (we)
=2 te a*i—l—eicos(wqb)
(Ricca, 1993) : @= o oo To wro
i i 1 1/2
z:%+ezl Z:E+6(1+E> cos (wo)

Theorem (Ricca, 1993)

Let 7, 4 denote the embedding of a small-amplitude vortex torus knot %, evolving under
LIA. Z, 4 is steady and stable under linear perturbation iff ¢ > p (w > 1).

.
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Numerical Results

Numerical Study of Evolution of Vortex Knots

@ The evolution is obtained by integrating the equation of motion forward in time at
each point from the initial vortex configuration (fourth order Runge Kutta
algorithm);

o De-singularization of the BS intergral:

F ! "
u:uo—&—ul:E(X x X")in

(21.1)"/? J

+u
CTCDTE

where [ and [_ are the distances to the nearest neighbouring point.

z

./ x

Maggioni, Alamri, Barenghi & Ricca Velocity, Energy and Helicity of Vortex Knots Topological Fluid Dynamics 8/15



Numerical Results

Twist and Writhe Contributions to Helicity

H= / u-wdV = LkI’* = pqI'? = Hyy + Huw = constant  Helicity
A%

For Unknots: Lk =0, hence H=0and Tw = -Wr.

@ Meridian wraps contribuite modestly to the total writhing number;

@ The dominant contribution comes from the longitudinal wraps.
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Numerical Results

Translation Velocity of Vortex Knots and Unknots

@ Velocity decreases with increasing winding number;
@ Fastest torus knots: highest number of longitudinal wraps;
@ At high winding number torus knots/unknots reverse their velocity.
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Numerical Results

Translation Velocity of Vortex Knots and Unknots

©  Unknots
® Knots

@ Vortex knots travel faster then their corresponding unknots;
@ The higher is the number of longitudinal wraps p, the faster is the translational
motion;
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Numerical Results

Kinetic Energy of Vortex Knots

Knots
20 T T T T

@ for w < 1 LIA law underestimates the actual energy of vortex knot;
o for w > 1 LIA provides much higher energy values.
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Numerical Results

Kinetic Energy of Vortex Unknots

Unknots
14 T T

@ for w < 1 LIA law underestimates the actual energy of vortex unknot;
o for w > 1 LIA provides much higher energy values.
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Numerical Results

Structural Stability
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For w < 1 the space traveled tends to decrease with increasing knot complexity: the
stabilizing effect due to the BS is confirmed,;
For w < 1 the vortex knots/unknots are LIA-unstable.
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Conclusions and References

@ The effect of geometric and topological aspects on the dynamics and energetics
of vortex torus knots/unknots have been analyzed;
@ In general:

@ for w < 1 the more complex the vortex structure is, the faster it moves.
9 For w > 1 all vortex structures move essentially as fast as Up, almost independently
from their total twist.

@ The LIA law tend to under-estimate the energy of knots with w < 1 and to
over-estimate the energy of knots with w > 1.

@ The stabilizing effect of the Biot-Savart law for knots with w < 1 (LIA-unstable)
has been confirmed.
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