Anderson localization, topology, and interaction

Pavel Ostrovsky

in collaboration with

I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov

PRL 105, 036803 (2010), PRB 85, 195130 (2012)

Cambridge, 20 September 2012
Outline

1 Introduction
 - Weak (anti)localization
 - Quantum Hall effect, quantum spin-Hall effect
 - Symmetry classification
 - Topological insulators

2 Localization in chiral systems
 - Absence of weak localization
 - Non-perturbative localization by vortices
 - Chiral topological insulators

3 Localization in symplectic systems
 - Interaction effects
 - QSHE phase diagram
 - Effect of vortices

4 Summary and outlook
Introduction
Scaling theory of localization

Abrahams, Anderson, Licciardello, Ramakrishnan ’79

Dimensionless conductance [in units e^2/h]:

- Metallic sample (Ohm’s law): $g \sim L^{d-2}$
- Insulating sample (tunneling): $g \sim e^{-L/\xi}$

Universal scaling function:

$$\frac{d \ln g}{d \ln L} = \beta(g) = \begin{cases} d - 2, & g \gg 1, \quad \text{(metal)}, \\ \ln g, & g \ll 1, \quad \text{(insulator)}. \end{cases}$$

![Graph showing the scaling function for different dimensions: 3D, 2D, and 1D.](image)
Quantum interference correction

- Metal with time-reversal symmetry \implies Cooperon loop

\[
\Delta \sigma = \pm \frac{2e^2}{h} \int \frac{(d^d q)}{q^2} = \pm \frac{e^2}{\pi h} \left\{ \frac{1}{\pi l} - \frac{1}{\pi L}, \begin{array}{c} \text{3D,} \\ \ln(L/l), \end{array} \begin{array}{c} \text{2D,} \\ L - l, \end{array} \begin{array}{c} \text{1D} \end{array} \right.
\]

Correction diverging in 2D and 1D
Spin preserved (broken) \implies weak (anti)localization

- No time-reversal symmetry \implies two diffuson loops

Very weak localization in 2D:

\[
\Delta \sigma = -\frac{e^4}{2\pi h^2 \sigma} \ln(L/l)
\]
Weak localization correction in 2D

Gor’kov, Larkin, Khmelnitskii ’79; Hikami, Larkin, Nagaoka ’80

\[
\frac{d \ln g}{d \ln L} = \begin{cases}
-(\pi g)^{-1}, & \text{orthogonal (TR preserved, spin preserved)}, \\
-(2\pi g^2)^{-1}, & \text{unitary (TR broken)}, \\
+(\pi g)^{-1}, & \text{symplectic (TR preserved, spin broken)}
\end{cases}
\]

\[\Sigma_{\text{Sp}} \approx 1.4\]
Nonlinear sigma model

- Effective theory for interacting diffusons and Cooperons

\[S[Q] = \frac{\pi \nu}{8} \int d^2 r \ \text{tr} \ [D(\nabla Q)^2 + 2i \omega \wedge Q] \]

- Matrix field

\[
Q \in \begin{cases}
U(2N)/U(N) \times U(N), & \text{unitary (A)}, \\
Sp(2N)/Sp(N) \times Sp(N), & \text{orthogonal (AI)}, \\
O(2N)/O(N) \times O(N), & \text{symplectic (All)}.
\end{cases}
\]

- Replica limit \(N \to 0 \) is assumed

- Renormalization of \(D \implies \text{weak (anti)localization} \)
Quantum Hall effect
von Klitzing, Dorda, Pepper ‘80

Electron states

Quantized resistance

Landau levels

- Anderson localization
- Topology
- Interaction
Quantum Hall effect
Pruisken '83; Khmelnitskii '83

Low-energy theory: unitary class sigma model with θ-term

$$S[Q] = \int d^2 r \ tr \left[\frac{\sigma_{xx}}{8} (\nabla Q)^2 + \frac{\sigma_{xy}}{4} (Q \nabla_x Q \nabla_y Q) \right]$$

$Q: S^2 \mapsto \mathcal{M} = U(2N)/U(N) \times U(N) \quad \pi_2(\mathcal{M}) = \mathbb{Z}$

Top. invariant: $\int d^2 r \ tr \ Q \nabla_x Q \nabla_y Q = 8\pi i n \implies e^{-S}$ is periodic in σ_{xy}!

Two-parameter scaling:

Quantum-Hall transition at half-integer σ_{xy} and $\sigma_{xx} = \sigma^*_U \approx 0.6$
Quantum spin-Hall effect
Kane, Mele ’05, Sheng et al ’05 Bernevig, Zhang ’06

No magnetic field but strong spin-orbit interaction

Electrons with opposite spins feel opposite effective magnetic field

Electric current leads to spin accumulation at the edges

⇒ spin-Hall effect

Extreme spin-orbit coupling opens a band gap

⇒ quantum spin-Hall effect
Quantum (spin-)Hall effect with disorder

Impurities do not destroy the edge (spin) current:

QHE

due to chirality of carriers
any disorder

\mathbb{Z} top. term in 2D

QSHE

due to time-inversion symmetry
no magnetic impurities

\mathbb{Z}_2 top. term in 1D
Quantum spin-Hall effect: experiment
Molenkamp group '07

HgTe/CdTe quantum well

I — $d = 5.5\text{nm}$: normal insulator
II, III, IV — $d = 7.3\text{nm}$: inverted band gap — topological insulator
Symmetry Classification

Wigner ’51, Dyson ’62, Altland and Zirnbauer ’97, Schnyder et al ’08

- Always present: diffuson

- Time-reversal symmetry (T):

 \[H = U H^T U^{-1}, \quad T^2 = U U^* = \pm 1 \]
 Cooperon

- Chiral symmetry (C):

 \[H = -U H U^{-1} \]
 RR diffuson

- Particle-hole symmetry (CT):

 \[H = -U H^T U^{-1}, \quad CT^2 = U U^* = \pm 1 \]
 RR Cooperon
Symmetry Classification

Wigner ’51, Dyson ’62, Altland and Zirnbauer ’97, Schnyder et al ’08

<table>
<thead>
<tr>
<th></th>
<th>(T^2)</th>
<th>(C)</th>
<th>(CT^2)</th>
<th>(NL\sigma M)</th>
<th>(\pi_1)</th>
<th>(\pi_2)</th>
<th>(\pi_3)</th>
<th>WL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(U(2N)/U(N) \times U(N))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0(-)</td>
</tr>
<tr>
<td>Al</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>(O(2N)/O(N) \times O(N))</td>
<td>(\mathbb{Z}_2)</td>
<td>(\mathbb{Z}_2)</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>AlI</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(U(N))</td>
<td>(\mathbb{Z})</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>(\equiv 0)</td>
</tr>
<tr>
<td>BDI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(U(2N)/Sp(2N))</td>
<td>(\mathbb{Z})</td>
<td>0</td>
<td>0</td>
<td>(\equiv 0)</td>
</tr>
<tr>
<td>CII</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>(U(N)/O(N))</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z}_2)</td>
<td>(\mathbb{Z}_2)</td>
<td>(\equiv 0)</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(O(2N)/U(N))</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>(Sp(2N)/U(N))</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z}_2)</td>
<td>-</td>
</tr>
<tr>
<td>DIII</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>(O(N))</td>
<td>(\mathbb{Z}_2)</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>+</td>
</tr>
<tr>
<td>CI</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>(Sp(2N))</td>
<td>0</td>
<td>0</td>
<td>(\mathbb{Z})</td>
<td>-</td>
</tr>
</tbody>
</table>
Classification: Bott periodicity

Kitaev ’08, Schnyder et al ’08

<table>
<thead>
<tr>
<th></th>
<th>T^2</th>
<th>C</th>
<th>CT^2</th>
<th>NLσM</th>
<th>π_1</th>
<th>π_2</th>
<th>π_3</th>
<th>π_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$U(2N)/U(N) \times U(N)$</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>All</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$U(N)$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>AI</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$Sp(2N)/Sp(N) \times Sp(N)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>BDI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$U(2N)/Sp(2N)$</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$O(2N)/U(N)$</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIII</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>$O(N)$</td>
<td>\mathbb{Z}_2</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>$O(2N)/O(N) \times O(N)$</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>CII</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$U(N)/O(N)$</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>$Sp(2N)/U(N)$</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>Cl</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$Sp(2N)$</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}_2</td>
</tr>
</tbody>
</table>
Classification of topological insulators

Kitaev '08, Schnyder et al '08

\[\mathbb{Z} \text{ topology} \]

Let \(\pi_d = \mathbb{Z} \) (as in QHE at \(d = 2 \))

\[\Rightarrow \text{topological term may appear in } d \text{ dimensions} \]

\[\Rightarrow (d - 1)\text{-dimensional surface states delocalized} \]

\[\Rightarrow d\text{-dimensional } \mathbb{Z} \text{ topological insulator} \]

\[\mathbb{Z}_2 \text{ topology} \]

Let \(\pi_d = \mathbb{Z}_2 \) (as on the \(d = 2 \) surface of 3D BiSb)

\[\Rightarrow \text{topological term with } \theta = \pi \]

\[\Rightarrow \text{absence of localization (as in graphene with potential disorder)} \]

\[\Rightarrow (d + 1)\text{-dimensional } \mathbb{Z}_2 \text{ topological insulator} \]
Classification of topological insulators

Kitaev '08, Schnyder et al '08

<table>
<thead>
<tr>
<th></th>
<th>T^2</th>
<th>C</th>
<th>CT^2</th>
<th>$d = 1$</th>
<th>$d = 2$</th>
<th>$d = 3$</th>
<th>$d = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z} (QHE)</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>AIII</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
<tr>
<td>AI</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>BDI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>\mathbb{Z}_2 (InSb)</td>
<td>\mathbb{Z}_2 (TQHE)</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>DIII</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
<td>0</td>
</tr>
<tr>
<td>AIi</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}_2 (QSHE)</td>
<td>\mathbb{Z}_2 (BiSb et al)</td>
<td>0</td>
</tr>
<tr>
<td>CII</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>\mathbb{Z}</td>
<td>0</td>
<td>\mathbb{Z}_2</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>\mathbb{Z} (SQHE)</td>
<td>0</td>
<td>\mathbb{Z}_2</td>
</tr>
<tr>
<td>CI</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>\mathbb{Z}</td>
<td>0</td>
</tr>
</tbody>
</table>
Localization in chiral systems
From metal to insulator

Gradually remove sites from graphene

Metal-insulator transition expected!
From metal to insulator

Gradually remove sites from graphene

Metal-insulator transition expected!
From metal to insulator

Gradually remove sites from graphene

Metal-insulator transition expected!
From metal to insulator

Gradually remove sites from graphene

Metal-insulator transition expected!
Chiral unitary (AIII) network model
Both critical (Gade) and localized phase observed
Similar results for dimerized lattice model \[\text{[Motrunich et al.'02]}\]
Localization from metallic perspective

Gade and Wegner ’91, Gade ’93

- 2D nonlinear sigma model for a chiral system

\[S[Q] = \int d^2x \left\{ \frac{\sigma}{8\pi} \text{tr} \left[\nabla Q^{-1} \nabla Q \right] - \frac{c}{8\pi} \left[\text{tr} Q^{-1} \nabla Q \right]^2 \right\} \]

- Matrix field

\[Q \in \left\{ \begin{array}{c}
U(N), \quad \text{unitary (AIII),} \\
U(N)/Sp(N), \quad \text{orthogonal (BDI),} \\
U(N)/O(N), \quad \text{symplectic (CII).}\end{array} \right. \]

- Replica limit \(N \to 0 \) is assumed

- \(\sigma \) – conductivity per square
Localization from metallic perspective

Gade and Wegner ’91, Gade ’93

- Rewrite $Q = e^{i\phi}U$ (det $U = 1$)

$$S[U, \phi] = \int d^2x \left\{ \frac{\sigma}{8\pi} \text{tr} \left[\nabla U^{-1} \nabla U \right] + N \left(\frac{\sigma + Nc}{8\pi} \right) (\nabla \phi)^2 \right\}$$

- Decoupled Gaussian theory in ϕ:

$$\frac{d}{d\ln L} (\sigma + Nc) = 0$$

- Replica limit

$$\frac{d\sigma}{d\ln L} = -N \lim_{N \to 0} \frac{dc}{d\ln L} = 0$$

Absence of localization to all orders in perturbation theory!
Status quo

Apparent controversy

- Strong disorder induces localization in a chiral system (intuition + numerics)
- No traces of localization in the perturbation theory in the metallic limit (Gade and Wegner)
- No room for topological protection against localization

How to resolve?

Take into account non-perturbative effects
Loophole to escape Gade and Wegner argument:
\[\det Q = e^{i\phi} \in U(1) \simeq S^1 \]
\[\Rightarrow \text{vortex excitations allowed!} \]

Recalls Berezinskii-Kosterlitz-Thouless transition!
BKT Transition
Berezinskii ’70, Kosterlitz and Thouless ’73

- Continuum limit of xy-model: \[S[\phi] = \frac{J}{2} \int d^2 x (\nabla \phi)^2 \]
- Vortex excitations with core energy \(S_{\text{core}} \)
- Large \(J \) (low temperature):
 \[\implies \text{vortices strongly bound in tiny dipoles} \]
 \[\implies \text{ordered phase (quasi long-range order)} \]
- Small \(J \) (high temperature):
 \[\implies \text{vortex plasma, disordered phase} \]
- Renormalization group (fugacity \(y = L^2 e^{-S_{\text{core}}} \))
 \[\frac{dJ}{d \ln L} = -y^2 J^2 \]
 \[\frac{dy}{d \ln L} = (2 - \pi J) y \]
BKT Transition
Berezinskii '70, Kosterlitz and Thouless '73

\[y_2 - p J \]

RG-flow in the vicinity of the critical “end” point.
Renormalization group

- Expand the fast field \tilde{Q} near 1
 \[\implies \text{One-loop perturbative RG:} \]
 \[
 \frac{d\sigma}{d \ln L} = 0, \quad \frac{dc}{d \ln L} = 1
 \]

 Exact in AIII class [Guruswamy et al'00]

- Include one vortex-antivortex dipole in \tilde{Q}
 (lowest order in fugacity $y = e^{-S_{\text{core}}}$)
 \[
 \frac{d\sigma}{d \ln L} = -\sigma y^2, \quad \frac{dc}{d \ln L} = 1 - (\sigma + 2c)y^2, \\
 \frac{dy}{d \ln L} = \left(2 - \frac{\sigma + c}{4}\right)y
 \]
Flow diagram

In terms of stiffness parameter \(K = (\sigma + c)/4 \)

\[
\frac{d\sigma}{d \ln L} = -\sigma y^2, \quad \frac{dK}{d \ln L} = \frac{1}{4} - 2Ky^2, \quad \frac{dy}{d \ln L} = (2 - K)y
\]

Fixed points:
- metal (Gade)
- critical
- insulator

No minimal metallic conductivity
Vortices vs. topology

- Chiral symplectic class CII admits \mathbb{Z}_2 θ-term
 - Vortices attract instantons
 - Vortex-instanton fusion changes $S_{\text{core}} \mapsto S_{\text{core}} + i\pi$
 - Internal \mathbb{Z}_2 degree of freedom in each vortex

- Chiral unitary class AIII admits Wess-Zumino term
 - Vortices break global gauge symmetry
 - Internal “Goldstone” degree of freedom in each vortex
 - Random $\text{Im} S_{\text{core}}$

Presence of topological terms in sigma-model action prevents the theory from vortices!
Localization in symplectic systems
Interaction in disordered system

Altshuler, Aronov ’79; Finkelstein ’83

- Coulomb interaction \Rightarrow new soft mode: plasmon

- Corrections to diffusion:

- Logarithmic in 2D: $\Delta g = -\frac{2e^2}{\pi hN} \log(L_T/l)$

- To be added to weak (anti)localization

- $N =$ number of independent flavours (valleys, spin etc.)

- Finkelstein sigma model
Scaling with interaction

Coulomb interaction “kills” metallic phase in symplectic class

\[\beta(g) \]

no interaction

\[g^* \approx 1.4 \]

supermetal

with interaction

\[\beta(g) \]

0

\[g^* \approx 1.4 \]

insulator
QSHE: Coulomb interaction

- Edge modes are protected w.r.t. Coulomb interaction
 - Distinction between normal and QSH insulator is robust
- Coulomb interaction "kills" supermetal phase

Interaction restores direct quantum spin-Hall transition
via a novel critical state
\mathbb{Z}_2 vortices in symplectic system

Fu, Kane, arXiv:1208.3442

Fu&Kane: **Localization in symplectic class is due to \mathbb{Z}_2 vortices!!!**

no vortices \implies no localization

Combine everything

No vortices + Coulomb interaction = critical state for QSHE transition
Summary

Results
1. Renormalization of sigma model due to \mathbb{Z} vortices
2. Metal-insulator transition in chiral systems
3. Topological prevention from vortex-induced localization
4. Interaction-induced critical state in QSHE
5. \mathbb{Z}_2 vortices + Coulomb interaction = critical state for QSHE transition

Outlook
1. Numerical study of localization transition in chiral systems
2. Higher-dimensional effects (vortex loops)
3. \mathbb{Z}_2 vortices in DIII

PRL 105, 036803 (2010), PRB 85, 195130 (2012)