Scalable and Efficient Multi-Moment ADER Methods For Atmospheric Dynamical Cores

Matthew R. Norman
Scientific Computing Group
Oak Ridge National Laboratory

PDEs On The Sphere 2012
Computing Has Changed And Is Changing

• Power consumption now the most constraining aspect of HPC
• Better hardware power efficiency makes your life harder
 – More raw computing, relatively less fast cache available
 – Data movement extremely slow
• Significant computation is required to justify a data access
 – Efficient data accesses, do as much as you can with each access
 – Avoid / sparsen data movement even at the cost of more computation
Computing Has Changed And Is Changing

• Power consumption now the most constraining aspect of HPC
• Better hardware power efficiency makes your life harder
 – More raw computing, relatively less fast cache available
 – Data movement extremely slow
• Significant computation is required to justify a data access
 – Efficient data accesses, do as much as you can with each access
 – Avoid / sparsen data movement even at the cost of more computation
• BUT, traditional efficiency constraints still matter
 – Small time step = More MPI communication + More wall time
 – Cost per time step: Core-hour allocations should be reasonable
 – Fastest path to an unusable solution does not give good science
 – Inappropriate algorithms achieving peak flops are still inappropriate
Some Options For A Numerical Method

- Moments: Define the moments to evolve
- Grid: Arrange where those moments live
- Recovery: Coordinate moments to describe fluid state
- Evolution: Formulate constraints to evolve moments
- Approximation: Practically satisfy the evolution constraints
- Time Integrator: Step forward to predict future moments
- Limiting: Control oscillations in the solution
Some Options For A Numerical Method

- Moments: Define the moments to evolve
- Grid: Arrange where those moments live
- Recovery: Coordinate moments to describe fluid state
- Evolution: Formulate constraints to evolve moments
- Approximation: Practically satisfy the evolution constraints
- Time Integrator: Step forward to predict future moments
- Limiting: Control oscillations in the solution
What Does “Multi-Moment” Look Like?

- Elements / control volumes with multiple discrete data

Single Moment - Stencil

Multi-Moment - Local
What Does “Multi-Moment” Look Like?

- Elements / control volumes with multiple discrete data

Single Moment - Stencil

All moments contribute to the recovery

Only **one** moment uses the recovery to evolve

Multi-Moment - Local

All moments contribute to the recovery

All moments use the recovery to evolve.
A Few Types Of “Multi-Moment”

Nodal Finite-Volume

\[\sum \frac{a_{i,j}}{|\Omega|} \int_{\Omega} \frac{\partial^{i+j} U}{\partial x^i \partial y^j} d\Omega \]

Modal Finite-Volume

Nodal Basis

Modal Basis
Evolution Constraints For Moments

• Evolution: What you do to the PDEs

• Examples:
 – Do nothing (strong): Finite-Difference
 – Integrate spatially (weak): Finite-Volume
 – Apply test function & integrate: Variational / Galerkin
 – Differentiate & integrate spatially: Multi-Moment Finite-Volume
 – Apply a transform: Global Spectral
 – Change of reference frame: [Semi -] Lagrangian

• Evolution largely informs time step & accuracy
ADER: Arbitrary-order DERivative Riemann

- **Input:** spatial derivatives → **Output:** space-time derivatives

- Fully-discrete: Only one communication stage per time step
- Full multi-dimensional, non-linear coupling over a time step
- Arbitrarily high-order-accurate, fully couples all terms involved

Exploring A Scalable Time Stepping Option
Exploring A Scalable Time Stepping Option

- **ADER: Arbitrary-order DErivative Riemann**
 - **Input:** spatial derivatives
 - **Output:** space-time derivatives
 - Fully-discrete: Only one communication stage per time step
 - Full multi-dimensional, non-linear coupling over a time step
 - Arbitrarily high-order-accurate, fully couples all terms involved

- **Example (Ye Olde Fashioned Way)**

 \[
 \frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
 \]
• ADER: Arbitrary-order DErivative Riemann
 \textbf{Input: spatial derivatives} \rightarrow \textbf{Output: space-time derivatives}
 – Fully-discrete: Only one communication stage per time step
 – Full multi-dimensional, non-linear coupling over a time step
 – Arbitrarily high-order-accurate, fully couples all terms involved

• Example (Ye Olde Fashioned Way)

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]

\[
\frac{\partial U}{\partial t} = -\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} + S(U)
\]
Exploring A Scalable Time Stepping Option

- ADER: Arbitrary-order DErivative Riemann
 Input: spatial derivatives Output: space-time derivatives
 - Fully-discrete: Only one communication stage per time step
 - Full multi-dimensional, non-linear coupling over a time step
 - Arbitrarily high-order-accurate, fully couples all terms involved

- Example (Ye Olde Fashioned Way)

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]
\[
\frac{\partial^2 U}{\partial x \partial t} = -\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial x} S(U)
\]
Exploring A Scalable Time Stepping Option

- ADER: Arbitrary-order DDerivative Riemann
 - Fully-discrete: Only one communication stage per time step
 - Full multi-dimensional, non-linear coupling over a time step
 - Arbitrarily high-order-accurate, fully couples all terms involved

Example (Ye Olde Fashioned Way)

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = -\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial x} S(U)
\]

\[
\frac{\partial^2 U}{\partial t^2} = -\frac{\partial}{\partial t} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial t} S(U)
\]
• ADER: Arbitrary-order D Errivative Riemann
 Input: spatial derivatives \rightarrow \text{Output: space-time derivatives}
 – Fully-discrete: Only one communication stage per time step
 – Full multi-dimensional, non-linear coupling over a time step
 – Arbitrarily high-order-accurate, fully couples all terms involved
• Example (Ye Olde Fashioned Way)

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = -\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial x} S(U)
\]

\[
\frac{\partial^2 U}{\partial t^2} = -\frac{\partial}{\partial t} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial t} S(U)
\]

\[
\frac{\partial U}{\partial t} = -\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} + S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = -\frac{\partial F}{\partial U} \frac{\partial^2 U}{\partial x^2} - \frac{\partial^2 F}{\partial U^2} \left(\frac{\partial U}{\partial x} \right)^2 + \frac{\partial S}{\partial U} \frac{\partial U}{\partial x}
\]

\[
\frac{\partial^2 U}{\partial t^2} = -\frac{\partial F}{\partial U} \frac{\partial^2 U}{\partial x \partial t} - \frac{\partial^2 F}{\partial U^2} \left(\frac{\partial U}{\partial t} \right)^2 + \frac{\partial S}{\partial U} \frac{\partial U}{\partial t}
\]
Exploring A Scalable Time Stepping Option

- **ADER: Arbitary-order DERivative Riemann**
 - **Input:** spatial derivatives
 - **Output:** space-time derivatives
 - Fully-discrete: Only one communication stage per time step
 - Full multi-dimensional, non-linear coupling over a time step
 - Arbitrarily high-order-accurate, fully couples all terms involved

- **Example (Ye Olde Fashioned Way)**

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial x} S(U)
\]

\[
\frac{\partial^2 U}{\partial t^2} = - \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial t} S(U)
\]

\[
\frac{\partial U}{\partial t} = - \frac{\partial F}{\partial U} \frac{\partial U}{\partial x} + S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = - \frac{\partial F}{\partial U} \frac{\partial^2 U}{\partial U^2} \frac{\partial U}{\partial x} - \frac{\partial^2 F}{\partial U^2} \left(\frac{\partial U}{\partial x} \right)^2 + \frac{\partial S}{\partial U} \frac{\partial U}{\partial x}
\]

\[
\frac{\partial^2 U}{\partial t^2} = - \frac{\partial F}{\partial U} \frac{\partial^2 U}{\partial U^2} \frac{\partial U}{\partial t} - \frac{\partial^2 F}{\partial U^2} \left(\frac{\partial U}{\partial t} \right)^2 + \frac{\partial S}{\partial U} \frac{\partial U}{\partial t}
\]
Exploring A Scalable Time Stepping Option

• ADER: Arbitrary-order DERivative Riemann
 Input: spatial derivatives → Output: space-time derivatives
 – Fully-discrete: Only one communication stage per time step
 – Full multi-dimensional, non-linear coupling over a time step
 – Arbitrarily high-order-accurate, fully couples all terms involved

• Example (Ye Olde Fashioned Way)

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)
\]

\[
\frac{\partial^2 U}{\partial x \partial t} = -\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial x} S(U)
\]

\[
\frac{\partial^2 U}{\partial t^2} = -\frac{\partial}{\partial t} \left(\frac{\partial F}{\partial U} \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial t} S(U)
\]

• Use space-time derivatives however you want
Exploring A Scalable Time Stepping Option

- **ADER: Arbitrary-order DDerivative Riemann**

 Input: spatial derivatives ➔ **Output:** space-time derivatives
 - Fully-discrete: Only one communication stage per time step
 - Full multi-dimensional, non-linear coupling over a time step
 - Arbitrarily high-order-accurate, fully couples all terms involved

- **Example (Ye Olde Fashioned Way)**

\[
\begin{align*}
 \frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} &= 0 \\
 \frac{\partial^2 U}{\partial x \partial t} &= -\frac{\partial}{\partial x} \left(\frac{\partial F(U)}{\partial x} \right) + \frac{\partial}{\partial x} S(U) \\
 \frac{\partial^2 U}{\partial t^2} &= -\frac{\partial}{\partial t} \left(\frac{\partial F(U)}{\partial x} \right) + \frac{\partial}{\partial t} S(U)
\end{align*}
\]

Typically done in Maple / Mathematica

Not the most efficient way to do this

- Use space-time derivatives however you want
Exploring A Scalable Time Stepping Option

• A Better ADER Procedure (Norman & Finkel 2012, JCP)
 – Differential Transforms: Transforms PDE into a recurrence relation
 \[
 \frac{\partial q(x,t)}{\partial t} = -\frac{1}{2} \frac{\partial q(x,t)^2}{\partial x}
 \]
 \[
 Q(k,h+1) = -\frac{1}{2} \frac{k+1}{h+1} \sum_{r=0}^{k+1} \sum_{s=0}^{h} Q(r,s)Q(k+1-r,h-s)
 \]
 – Result is Taylor expansion
 – Taylor expansion closes any spatial operator or mesh (very flexible)
 – Quadrature-free possible: All PDE terms expanded as polynomials
 – AMR local time stepping simplified (Yulong Xing, ORNL)
 – Limiting the input spatial derivatives also limits the temporal evolution
 • But does not (yet?) guarantee maintained monotonicity
Some interesting time stepping properties base on evolution

- “p” is the number of moments per cell / element
- Nodal SSP-RK (fixed) Galerkin: \[\Delta t \propto \Delta x^{-1} p^{-1.7} \]
Exploring Scalable Evolution Operators

• Some interesting time stepping properties base on evolution
 – “p” is the number of moments per cell / element
 – Nodal SSP-RK (fixed) Galerkin: \(\Delta t \propto \Delta x^{-1} p^{-1.7} \)
 – ADER Spectral Volume: Depends on “\(\mu \)” \(\Delta t \propto \Delta x^{-1} p^{-(1+0.3\mu^{1.25})} \)
 • Larger \(\mu \) means more grid clustering near edges
 • Smaller \(\mu \) also means more oscillatory reconstructions
 • Literature standard is \(\mu=1.6 \): \(\Delta t \propto \Delta x^{-1} p^{-1.5} \)
 • Yet \(\mu=1.0 \) is also well bounded: \(\Delta t \propto \Delta x^{-1} p^{-1.3} \)
Exploring Scalable Evolution Operators

- Some interesting time stepping properties base on evolution
 - “p” is the number of moments per cell / element
 - Nodal SSP-RK (fixed) Galerkin: \(\Delta t \propto \Delta x^{-1} p^{-1.7} \)
 - ADER Spectral Volume: Depends on “\(\mu \)” \(\Delta t \propto \Delta x^{-1} p^{-\left(1+0.3\mu^{1.25}\right)} \)
 - Larger \(\mu \) means more grid clustering near edges
 - Smaller \(\mu \) also means more oscillatory reconstructions
 - Literature standard is \(\mu=1.6 \): \(\Delta t \propto \Delta x^{-1} p^{-1.5} \)
 - Yet \(\mu=1.0 \) is also well bounded: \(\Delta t \propto \Delta x^{-1} p^{-1.3} \)
 - MM-FV: \(\Delta t \propto \Delta x^{-1} p^{0} \)
 - No time step reduction with p-refinement
Some interesting time stepping properties base on evolution

- “p” is the number of moments per cell / element
- Nodal SSP-RK (fixed) Galerkin: \(\Delta t \propto \Delta x^{-1} p^{-1.7} \)
- ADER Spectral Volume: Depends on “\(\mu \)” \(\Delta t \propto \Delta x^{-1} p^{-(1+0.3\mu^{1.25})} \)
 - Larger \(\mu \) means more grid clustering near edges
 - Smaller \(\mu \) also means more oscillatory reconstructions
 - Literature standard is \(\mu=1.6 \): \(\Delta t \propto \Delta x^{-1} p^{-1.5} \)
 - Yet \(\mu=1.0 \) is also well bounded: \(\Delta t \propto \Delta x^{-1} p^{-1.3} \)
- MM-FV: \(\Delta t \propto \Delta x^{-1} p^0 \)
 - No time step reduction with \(p \)-refinement
Some interesting time stepping properties base on evolution

- “p” is the number of moments per cell / element
- Nodal SSP-RK (fixed) Galerkin: \(\Delta t \propto \Delta x^{-1} p^{-1.7} \)
- ADER Spectral Volume: Depends on “μ” \(\Delta t \propto \Delta x^{-1} p^{-\left(1+0.3\mu^{1.25}\right)} \)
 - Larger μ means more grid clustering near edges
 - Smaller μ also means more oscillatory reconstructions
 - Literature standard is μ=1.6: \(\Delta t \propto \Delta x^{-1} p^{-1.5} \)
 - Yet μ=1.0 is also well bounded: \(\Delta t \propto \Delta x^{-1} p^{-1.3} \)
- MM-FV: \(\Delta t \propto \Delta x^{-1} p^0 \)
 - No time step reduction with p-refinement
- Each p-converges exponentially but not at the same rate
Multi-Moment Finite-Volume Methods

- Store mean state vector derivatives
 \[\frac{1}{|\Omega|} \int_{\Omega} \frac{\partial i U}{\partial x^i} d\Omega \quad i = 1, \ldots, N - 1 \]

- Evolve with FV treatment of PDE derivatives
 \[
 \frac{\partial}{\partial t} \frac{\partial i U}{\partial x^i} + \frac{1}{\Delta x} \left(\frac{\partial i F(U)}{\partial x^i} \bigg|_R - \frac{\partial i F(U)}{\partial x^i} \bigg|_L \right) = \int_{\Omega} \frac{\partial i S(U)}{\partial x^i} d\Omega \quad i = 1, \ldots, N - 1
 \]

- Do ADER procedure at time step beginning & cell center
 - State, flux & source components are all polynomial expansions

- Sample, integrate, & differentiate PDE terms to close scheme
 - These are all dot products and matrix-vector products

- Use flux-vector version of f-waves Riemann solver for fluxes
 - Allows direct use of time-averaged interface fluxes
 - Only one Riemann solve for all flux derivatives per time step
Accuracy vs Runtime (1-D SW Model)

L1 Relative Error vs Serial Runtime During p-Refinement

Closer to point of origin (lower left) is better

- On my mac
- Intel 12 compiler –fast
- Double precision
- Used PAPI hooks
- Tried to optimize each method
MPI Communication Comparison

Stages of Communication per Length of Simulation
Using Linear Analysis Maximum Stable Time Step, Normalized by ADER+MM-FV
MPI Communication Comparison

Stages of Communication per Length of Simulation
Using Linear Analysis Maximum Stable Time Step, Normalized by ADER+MM-FV

- ADER + DG-N
- ADER + SV1.0
- SSP-RK4 + DG-N
- ADER + MM-FV

Normalized stages of communication:
- 4
- 6
- 8
- 12
- 16
MPI Communication Comparison

Stages of Communication per Length of Simulation
Using Linear Analysis Maximum Stable Time Step, Normalized by ADER+MM-FV

In fairness, MM-FV communicates more data per stage than nodal DG
Still, latency is not negligible
ADER+MM-FV Limiting: [H]WENO or FCT

- Shallow-Water shock solution (Hermite WENO plotted below)
- Flux-Corrected Transport (FCT) is also an option
ADER+MM-FV Limiting: [H]WENO or FCT

- Shallow-Water shock solution (Hermite WENO plotted below)
- Flux-Corrected Transport (FCT) is also an option
Conclusions

• Unexplored moments and evolution formulations may be better suited for current and future massively parallel computers.

• ADER is a non-linearly coupled, highly accurate way to cluster computation and avoid communication – now much cheaper.

• Spectral Volume can use a larger time step than Galerkin depending upon mesh clustering near element boundaries.

• Multi-Moment Finite-Volume could prove very useful in communication avoidance, especially at high-order.

• We need to look at limiting more carefully to limit very high-order while preserving as much variation as possible.

• Computational profile in multiple spatial dimensions should be interesting to see.
Questions?
Time Integration Options

- Use the time derivative and evolution to get future moments
- Semi-discrete options (ODE solvers)
 - Multi-step: Use past time levels to predict future ones
 - Multi-stage: Advance forward iteratively in stages
- Fully-discrete options (Integrate directly in time)
 - Semi-Lagrangian: Trajectories to track over time
 - In-Place: Get temporal variation from spatial variation without tracking
- Time-implicit options
 - Future determined by the future, throw it all on LHS, linear solves
 - Must be preconditioned, need large problem size, \(\Delta t \) still not constant