Topological Solitons from Geometry

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant.

Max Born, Nobel Lecture, December 11, 1954.
Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant.

Max Born, Nobel Lecture, December 11, 1954.

Waves: Dispersion, diffraction, superpositions.
Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant.

Max Born, Nobel Lecture, December 11, 1954.

- Waves: Dispersion, diffraction, superpositions.
- Particles: mass, localisation.
Waves or Particles

- Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant.

Max Born, Nobel Lecture, December 11, 1954.

- Waves: Dispersion, diffraction, superpositions. **QFT**: Fourier transform, infinities, regularisation, . . . , string theory.

- Particles: mass, localisation.
Waves or Particles

Here I will only say that I am emphatically in favour of the retention of the particle idea. Naturally, it is necessary to redefine what is meant.

Max Born, Nobel Lecture, December 11, 1954.

- Waves: Dispersion, diffraction, superpositions. QFT: Fourier transform, infinities, regularisation, . . . , string theory.
- Particles: mass, localisation. Solitons, classical non-linear field equations, topological charges, stability.
Solitons: Non–singular, static, finite energy solutions of the field equations.

\[
L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx, \quad \text{where} \quad \phi : \mathbb{R}^{1,1} \to \mathbb{R}.
\]
Solitons: Non–singular, static, finite energy solutions of the field equations.

\[L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx, \quad \text{where} \quad \phi : \mathbb{R}^{1,1} \to \mathbb{R}. \]

- Stable vacuum: \(U \geq 0 \). Set \(U^{-1}(0) = \{ \phi_1, \phi_2, \ldots, \phi_N \} \).
Solitons: Non–singular, static, finite energy solutions of the field equations.

\[L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx, \quad \text{where} \quad \phi : \mathbb{R}^{1,1} \rightarrow \mathbb{R}. \]

- Stable vacuum: \(U \geq 0 \). Set \(U^{-1}(0) = \{ \phi_1, \phi_2, \ldots, \phi_N \} \).
- Finite energy: \(\phi(x, t) \rightarrow \phi_i \) as \(|x| \rightarrow \infty \).
Solitons: Non–singular, static, finite energy solutions of the field equations.

\[
L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx,
\]

where \(\phi : \mathbb{R}^{1,1} \rightarrow \mathbb{R} \).

- **Stable vacuum**: \(U \geq 0 \). Set \(U^{-1}(0) = \{ \phi_1, \phi_2, \ldots, \phi_N \} \).
- **Finite energy**: \(\phi(x, t) \rightarrow \phi_i \) as \(|x| \rightarrow \infty \).
 - \(\phi(x, t) = \phi_1 + \delta \phi(x, t) \). Perturbative Scalar boson \((\Box + m^2)\delta \phi = 0 \).
Solitons: Non–singular, static, finite energy solutions of the field equations.

\[L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx, \quad \text{where} \quad \phi : \mathbb{R}^{1,1} \to \mathbb{R}. \]

- Stable vacuum: \(U \geq 0 \). Set \(U^{-1}(0) = \{ \phi_1, \phi_2, \ldots, \phi_N \} \).
- Finite energy: \(\phi(x, t) \to \phi_i \) as \(|x| \to \infty \).
 - \(\phi(x, t) = \phi_1 + \delta \phi(x, t) \). Perturbative Scalar boson \((\Box + m^2) \delta \phi = 0\).
 - Kink: \(\phi \cong \phi_1 \) as \(x \to -\infty \). \(\phi \cong \phi_2 \) as \(x \to \infty \).
Solitons

Non–singular, static, finite energy solutions of the field equations.

\[L = \int_{\mathbb{R}} \left(\frac{1}{2} \phi_t^2 - \frac{1}{2} \phi_x^2 - U(\phi) \right) dx, \quad \text{where} \quad \phi : \mathbb{R}^{1,1} \to \mathbb{R}. \]

- **Stable vacuum:** \(U \geq 0 \). Set \(U^{-1}(0) = \{ \phi_1, \phi_2, \ldots, \phi_N \} \).
- **Finite energy:** \(\phi(x, t) \to \phi_i \) as \(|x| \to \infty \).
 - \(\phi(x, t) = \phi_1 + \delta \phi(x, t) \). Perturbative Scalar boson \((\Box + m^2) \delta \phi = 0 \).
 - **Kink:** \(\phi \cong \phi_1 \) as \(x \to -\infty \). \(\phi \cong \phi_2 \) as \(x \to \infty \).
Solitons and Topology

- Soliton stability
 - Nontrivial topology
Solitons and Topology

- Soliton stability
 - Nontrivial topology
 - Complete integrability

Static vortices: Abelian gauge potential $+ Higgs$ field $\phi: \mathbb{R}^2 \rightarrow \mathbb{C}$. Boundary conditions: $F = 0$ and $|\phi| = 1$ as $r \rightarrow \infty$.

$\phi: S^1 \rightarrow S^1$. Vortex number $\pi_1(S^1) = \mathbb{Z}$.

Skyrmions: $U: \mathbb{R}^3, 1 \rightarrow SU(2)$. Static+finite energy. $U: S^3 \rightarrow SU(2)$. Topological baryon number $\pi_3(S^3) = \mathbb{Z}$.

$B = -\frac{1}{24} \pi^2 \int_{\mathbb{R}^3} Tr[(U - 1) dU]^3$.

Dunajski (DAMTP, Cambridge)
Soliton stability

- Nontrivial topology ✓
- Complete integrability
Solitons and Topology

- Soliton stability
 - Nontrivial topology ✓
 - Complete integrability
- **Static vortices**: Abelian gauge potential + Higgs field $\phi : \mathbb{R}^2 \to \mathbb{C}$.
 - Boundary conditions: $F = 0$ and $|\phi| = 1$ as $r \to \infty$.
 - $\phi_\infty : S^1 \to S^1$. Vortex number $\pi_1(S^1) = \mathbb{Z}$.
Solitons and Topology

- Soliton stability
 - Nontrivial topology ✓
 - Complete integrability
- Static vortices: Abelian gauge potential + Higgs field $\phi : \mathbb{R}^2 \to \mathbb{C}$.
 - Boundary conditions: $F = 0$ and $|\phi| = 1$ as $r \to \infty$.
 - $\phi_\infty : S^1 \to S^1$. Vortex number $\pi_1(S^1) = \mathbb{Z}$.
- Skyrmions: $U : \mathbb{R}^{3,1} \to SU(2)$.
 - Static + finite energy. $U : S^3 \to SU(2)$.
 - Topological baryon number $\pi_3(S^3) = \mathbb{Z}$.

$$B = -\frac{1}{24\pi^2} \int_{\mathbb{R}^3} \text{Tr}[(U^{-1}dU)^3].$$
2D Kähler manifold \((\Sigma, g, \omega)\). Hermitian line bundle \(L \to \Sigma\) with \(U(1)\) connection \(A\) and a global section \(C^\infty\) section \(\phi : \Sigma \to L\).
Abelian Higgs Model

- 2D Kähler manifold \((\Sigma, g, \omega)\). Hermitian line bundle \(L \rightarrow \Sigma\) with \(U(1)\) connection \(A\) and a global section \(C^\infty\) section \(\phi : \Sigma \rightarrow L\).

- Ginsburg–Landau energy

\[
E[A, \phi] = \frac{1}{2} \int_\Sigma (|D\phi|^2 + |F|^2 + \frac{1}{4} (1 - |\phi|^2)^2) \text{vol}_\Sigma, \quad F = dA
\]
Abelian Higgs Model

- 2D Kähler manifold \((\Sigma, g, \omega)\). Hermitian line bundle \(L \rightarrow \Sigma\) with \(U(1)\) connection \(A\) and a global section \(C^\infty\) section \(\phi : \Sigma \rightarrow L\).

- Ginsburg–Landau energy

\[
E[A, \phi] = \frac{1}{2} \int_{\Sigma} (|D\phi|^2 + |F|^2 + \frac{1}{4}(1 - |\phi|^2)^2) \text{vol}_\Sigma, \quad F = dA
\]

- Bogomolny equations

\[
\overline{D}\phi = 0, \quad F = \frac{1}{2}\omega(1 - |\phi|^2)
\]
2D Kähler manifold \((\Sigma, g, \omega)\). Hermitian line bundle \(L \to \Sigma\) with \(U(1)\) connection \(A\) and a global section \(C^\infty\) section \(\phi : \Sigma \to L\).

Ginsburg–Landau energy

\[
E[A, \phi] = \frac{1}{2} \int_\Sigma (|D\phi|^2 + |F|^2 + \frac{1}{4} (1 - |\phi|^2)^2) \text{vol}_\Sigma, \quad F = dA
\]

Bogomolny equations

\[
\bar{D}\phi = 0, \quad F = \frac{1}{2} \omega(1 - |\phi|^2)
\]

Taubes equation: \(z = x + iy, \quad g = \Omega(z, \bar{z}) \, dzd\bar{z}\).

Set \(\phi = \exp(h/2 + i\chi)\), solve for \(A\).

\[
\Delta_0 h + \Omega - \Omega e^h = 0, \quad \text{where} \quad \Delta_0 = 4\partial_z \partial_{\bar{z}}.
\]
Vortex from geometry. $\Delta_0 h + \Omega - \Omega e^h = 0$.

- Vortex number

$$N = \frac{1}{2\pi} \int_{\Sigma} B \text{vol}_{\Sigma}, \quad h \sim 2N \log |z - z_0| + \text{const} + \ldots.$$
Vortex from geometry. \(\Delta_0 h + \Omega - \Omega e^h = 0 \).

- Vortex number

\[
N = \frac{1}{2\pi} \int_{\Sigma} B \ \text{vol}_{\Sigma}, \quad h \sim 2N \log |z - z_0| + \text{const} + \ldots.
\]

- Vortices on \(\mathbb{R}^2 \), i.e. \(\Omega = 1 \). No explicit solutions.
Vortex from geometry. \(\Delta_0 h + \Omega - \Omega e^h = 0 \).

- **Vortex number**

\[
N = \frac{1}{2\pi} \int_{\Sigma} B \, \text{vol}_\Sigma, \quad h \sim 2N \log |z - z_0| + \text{const} + \ldots.
\]

- **Vortices on** \(\mathbb{R}^2 \), i.e. \(\Omega = 1 \). No explicit solutions.

- **Make the Taubes equations integrable:** \(\Omega = \exp (-h/2) \).

\[
\Delta_0 (h/2) = \sinh (h/2), \quad \text{Sinh–Gordon equation.}
\]
Vortex from geometry. \[\Delta_0 h + \Omega - \Omega e^h = 0. \]

- **Vortex number**
 \[N = \frac{1}{2\pi} \int_{\Sigma} B \text{vol}_{\Sigma}, \quad h \sim 2N \log |z - z_0| + \text{const} + \ldots . \]

- Vortices on \(\mathbb{R}^2 \), i.e. \(\Omega = 1 \). No explicit solutions.
- Make the Taubes equations integrable: \(\Omega = \exp \left(-\frac{h}{2} \right) \).
 \[\Delta_0 \left(\frac{h}{2} \right) = \sinh \left(\frac{h}{2} \right), \quad \text{Sinh–Gordon equation.} \]

- Solitons from geometry: \(L = T\Sigma \), \(SO(2) \cong U(1) \), Chern number = Euler characteristic.
Geometry of Sinh–Gordon vortex

- $g = e^{-h/2} dz d\bar{z}$. Constant mean curvature surface $\Sigma \subset \mathbb{R}^{2,1}$.
Geometry of Sinh–Gordon vortex

- $g = e^{-h/2}dzd\bar{z}$. Constant mean curvature surface $\Sigma \subset \mathbb{R}^{2,1}$.
- Radial solutions, $h = h(r)$, s.t. $h \to 0$ as $r \to \infty$.

Large r: Modified Bessel equation, $h \sim 8\lambda K_0(r)$ for a constant λ.

Small r: Liouville equation, $h = 4\sigma \log r + ...$ for a constant σ.

In general, Painlevé III equation.

Theorem (MD, 2012)

1. $\sigma(\lambda) = 2\pi - \frac{1}{2} \arcsin \left(\frac{\pi \lambda}{\sqrt{\lambda^2 - 1}} \right)$ if $0 \leq \lambda \leq \pi - 1$.

2. There exists a one–vortex solution with strength $4\sqrt{2}/\pi$.

3. CMC surface with deficit angle π near $r = 0$.

Uses isomonodromy theory, and connection formulae (Kitaev).

One more integrable case: Tzitzeica equation and affine spheres.
Geometry of Sinh–Gordon vortex

- \(g = e^{-h/2}dzd\bar{z} \). Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).
- Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).
- Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).
Geometry of Sinh–Gordon vortex

- \(g = e^{-h/2}dzd\bar{z} \). Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).
- Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).
- Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).
- Small \(r \): Liouville equation, \(h = 4\sigma \log r + \ldots \) for a constant \(\sigma \).
Geometry of Sinh–Gordon vortex

g = e^{-h/2}dzd\bar{z}. Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).

Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).

Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).

Small \(r \): Liouville equation, \(h = 4\sigma \log r + \ldots \) for a constant \(\sigma \).

In general, Painlevé III equation.
Geometry of Sinh–Gordon vortex

- $g = e^{-h/2}dzd\bar{z}$. Constant mean curvature surface $\Sigma \subset \mathbb{R}^{2,1}$.
- Radial solutions, $h = h(r)$, s.t. $h \to 0$ as $r \to \infty$.
- Large r: Modified Bessel equation, $h \sim 8\lambda K_0(r)$ for a constant λ.
- Small r: Liouville equation, $h = 4\sigma \log r + \ldots$ for a constant σ.
- In general, Painl´eve III equation.
- Theorem (MD, 2012)

1. $\sigma(\lambda) = 2\pi - \frac{1}{2} \arcsin \left(\frac{\pi\lambda}{2} \right)$ if $0 \leq \lambda \leq \pi - 1$.
2. There exists a one–vortex solution with strength $4\sqrt{2}/\pi$.
3. CMC surface with deficit angle π near $r = 0$.

Uses isomonodromy theory, and connection formulae (Kitaev). One more integrable case: Tzitzeica equation and affine spheres.

Dunajski (DAMTP, Cambridge) Topological Solitons from Geometry December 2012
Geometry of Sinh–Gordon vortex

- $g = e^{-h/2}dzd\bar{z}$. Constant mean curvature surface $\Sigma \subset \mathbb{R}^{2,1}$.
- Radial solutions, $h = h(r)$, s.t. $h \to 0$ as $r \to \infty$.
- Large r: Modified Bessel equation, $h \sim 8\lambda K_0(r)$ for a constant λ.
- Small r: Liouville equation, $h = 4\sigma \log r + \ldots$ for a constant σ.
- In general, Painlevé III equation.
- Theorem (MD, 2012)
 \[\sigma(\lambda) = 2\pi^{-1} \arcsin(\pi \lambda) \text{ if } 0 \leq \lambda \leq \pi^{-1}. \]
Geometry of Sinh–Gordon vortex

- \(g = e^{-h/2}dzd\bar{z} \). Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).
- Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).
- Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).
- Small \(r \): Liouville equation, \(h = 4\sigma \log r + \ldots \) for a constant \(\sigma \).
- In general, Painléve III equation.
- Theorem (MD, 2012)
 1. \(\sigma(\lambda) = 2\pi^{-1} \arcsin(\pi \lambda) \) if \(0 \leq \lambda \leq \pi^{-1} \).
 2. There exists a one–vortex solution with strength \(4\sqrt{2}/\pi \).
Geometry of Sinh–Gordon vortex

- \(g = e^{-h/2}dzd\bar{z} \). Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).
- Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).
- Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).
- Small \(r \): Liouville equation, \(h = 4\sigma \log r + \ldots \) for a constant \(\sigma \).
- In general, Painlevé III equation.
- Theorem (MD, 2012)
 1. \(\sigma(\lambda) = 2\pi^{-1} \arcsin(\pi \lambda) \) if \(0 \leq \lambda \leq \pi^{-1} \).
 2. There exists a one–vortex solution with strength \(4\sqrt{2}/\pi \).
 3. CMC surface with deficit angle \(\pi \) near \(r = 0 \).
Geometry of Sinh–Gordon Vortex

- \(g = e^{-h/2} dzd\bar{z} \). Constant mean curvature surface \(\Sigma \subset \mathbb{R}^{2,1} \).
- Radial solutions, \(h = h(r) \), s.t. \(h \to 0 \) as \(r \to \infty \).
- Large \(r \): Modified Bessel equation, \(h \sim 8\lambda K_0(r) \) for a constant \(\lambda \).
- Small \(r \): Liouville equation, \(h = 4\sigma \log r + \ldots \) for a constant \(\sigma \).
- In general, Painléve III equation.
- Theorem (MD, 2012)
 1. \(\sigma(\lambda) = 2\pi^{-1} \arcsin(\pi\lambda) \) if \(0 \leq \lambda \leq \pi^{-1} \).
 2. There exists a one–vortex solution with strength \(4\sqrt{2}/\pi \).
 3. CMC surface with deficit angle \(\pi \) near \(r = 0 \).
- Uses isomonodromy theory, and connection formulae (Kitaev).
Geometry of Sinh–Gordon vortex

- $g = e^{-h/2}d\bar{z}dz$. Constant mean curvature surface $\Sigma \subset \mathbb{R}^{2,1}$.
- Radial solutions, $h = h(r)$, s.t. $h \to 0$ as $r \to \infty$.
- Large r: Modified Bessel equation, $h \sim 8\lambda K_0(r)$ for a constant λ.
- Small r: Liouville equation, $h = 4\sigma \log r + \ldots$ for a constant σ.
- In general, Painlevé III equation.
- Theorem (MD, 2012)
 1. $\sigma(\lambda) = 2\pi^{-1} \arcsin(\pi \lambda)$ if $0 \leq \lambda \leq \pi^{-1}$.
 2. There exists a one–vortex solution with strength $4\sqrt{2}/\pi$.
 3. CMC surface with deficit angle π near $r = 0$.

- Uses isomonodromy theory, and connection formulae (Kitaev).
- One more integrable case: Tzitzeica equation and affine spheres.
Skyrmions

- Skyrme model of Baryons. Nonlinear pion field $U : \mathbb{R}^{3,1} \rightarrow SU(2)$.

Energy of static skyrmions. Set $R_j = U - 1 \partial_j U \in su(2)$.

$$E[U] = -\frac{1}{2} \int_{\mathbb{R}^3} \left(\text{Tr} \left(R_j R_j \right) + \frac{1}{8} \left(\text{Tr} \left[\left[R_i, R_j \right] \left[R_i, R_j \right] \right) \right) \right) d^3x > \frac{12}{\pi^2} |B|.$$

Finite energy, $U : S^3 \rightarrow S^3$ and $B = \text{deg}(U) \in \mathbb{Z}$.

Skyrmions from instanton holonomy (Atiyah + Manton, 1989).

$U(x) = P \exp \left(-\int R A^4(x, \tau) d\tau \right)$.

Yang–Mills potential $A \in su(2)$ for a Yang–Mills field $F = dA + A \wedge A$ on \mathbb{R}^4. Baryon number = instanton number.
Skyrmions

- Skyrme model of Baryons. Nonlinear pion field $U : \mathbb{R}^{3,1} \to SU(2)$.
- Energy of static skyrmions. Set $R_j = U^{-1} \partial_j U \in \mathfrak{su}(2)$.

$$E[U] = -\frac{1}{2} \int_{\mathbb{R}^3} \left(\text{Tr}(R_j R_j) + \frac{1}{8} \text{Tr}([R_i, R_j][R_i, R_j]) \right) d^3x > 12\pi^2 |B|.$$
Skyrmions

- Skyrme model of Baryons. Nonlinear pion field $U : \mathbb{R}^{3,1} \to SU(2)$.
- Energy of static skyrmions. Set $R_j = U^{-1} \partial_j U \in \mathfrak{su}(2)$.

$$E[U] = -\frac{1}{2} \int_{\mathbb{R}^3} \left(\text{Tr}(R_j R_j) + \frac{1}{8} \text{Tr}([R_i, R_j][R_i, R_j]) \right) d^3x > 12\pi^2 |B|.$$

- Finite energy, $U : S^3_\infty \to S^3$ and $B = \text{deg}(U) \in \mathbb{Z}$.
Skyrmion model of Baryons. Nonlinear pion field \(U : \mathbb{R}^{3,1} \rightarrow SU(2) \).

Energy of static skyrmions. Set \(R_j = U^{-1} \partial_j U \in \mathfrak{su}(2) \).

\[
E[U] = -\frac{1}{2} \int_{\mathbb{R}^3} \left(\text{Tr}(R_j R_j) + \frac{1}{8} \text{Tr}([R_i, R_j][R_i, R_j]) \right) d^3x > 12\pi^2 |B|.
\]

Finite energy, \(U : S^3_\infty \rightarrow S^3 \) and \(B = \text{deg}(U) \in \mathbb{Z} \).

Skyrmions from instanton holonomy (Atiyah+ Manton, 1989).

\[
U(x) = \mathcal{P} \exp \left(- \int_{\mathbb{R}} A_4(x, \tau) d\tau \right)
\]

Yang–Mills potential \(A \in \mathfrak{su}(2) \) for a Yang–Mills field \(F = dA + A \wedge A \) on \(\mathbb{R}^4 \). Baryon number = instanton number.
Skyrmions

- Skyrme model of Baryons. Nonlinear pion field $U : \mathbb{R}^{3,1} \rightarrow SU(2)$.
- Energy of static skyrmions. Set $R_j = U^{-1} \partial_j U \in \mathfrak{su}(2)$.

$$E[U] = -\frac{1}{2} \int_{\mathbb{R}^3} \left(\text{Tr}(R_j R_j) + \frac{1}{8} \text{Tr}([R_i, R_j][R_i, R_j]) \right) d^3 x > 12\pi^2 |B|.$$

- Finite energy, $U : S^3_\infty \rightarrow S^3$ and $B = \text{deg}(U) \in \mathbb{Z}$.
- Skyrmions from instanton holonomy (Atiyah + Manton, 1989).

$$U(x) = \mathcal{P} \exp \left(- \int_{\mathbb{R}} A_4(x, \tau) d\tau. \right)$$

Yang–Mills potential $A \in \mathfrak{su}(2)$ for a Yang–Mills field $F = dA + A \wedge A$ on \mathbb{R}^4. Baryon number = instanton number.
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

\[
\begin{align*}
g &= \frac{1}{r^2} \left(\frac{1}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + r^2 d\psi^2 \right), \\
\theta &\in [0, \pi), \quad \phi \in [0, 2\pi), \quad \psi \in [0, 4\pi).
\end{align*}
\]

- Small \(r\): \(g \sim \) flat metric on \(\mathbb{R}^4\).
- Large \(r\): Hopf bundle \(S^3 \to S^2\), Chern class = 1.
- Asymptotically locally flat (ALF): \(M \sim S^1\) bundle over \(S^2\) at \(\infty\).

Charged particles = ALF instantons. Charge = Chern number of asymptotic \(S^1\) bundle.

Neutral particles = compact instantons. Proton, neutron, electron, neutrino. Atiyah–Hitchin, \(\mathbb{CP}^2\), Taub–NUT, \(S^4\).
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einsten four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

- **Taub–NUT metric**

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr) (d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

- Taub–NUT metric

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin \theta^2 d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).

- Small \(r\): \(g \sim \) flat metric on \(\mathbb{R}^4\).
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.
- **Taub–NUT metric**

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).

- Small \(r\): \(g \sim\) flat metric on \(\mathbb{R}^4\).
- Large \(r\): Hopf bundle \(S^3 \to S^2\), Chern class = 1.
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds (M, g) whose curvature is concentrated in a finite region of a space-time.

- **Taub–NUT metric**

 \[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
 \]

 where $\theta \in [0, \pi)$, $\phi \in [0, 2\pi)$, $\psi \in [0, 4\pi)$.

- Small r: $g \sim$ flat metric on \mathbb{R}^4.
- Large r: Hopf bundle $S^3 \to S^2$, Chern class $= 1$.
- Asymptotically locally flat (ALF): $M \sim S^1$ bundle over S^2 at ∞.
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M,g)\) whose curvature is concentrated in a finite region of a space-time.

- **Taub–NUT metric**

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).

- **Small** \(r\): \(g \sim\) flat metric on \(\mathbb{R}^4\).
- **Large** \(r\): Hopf bundle \(S^3 \to S^2\), Chern class \(= 1\).
- Asymptotically locally flat (ALF): \(M \sim S^1\) bundle over \(S^2\) at \(\infty\).

- **Particles** \(=\) gravitational instantons. (Atiyah, Manton, Schroers).

Charged particles = ALF instantons. Charge = Chern number of asymptotic \(S^1\) bundle.

Neutral particles = compact instantons. Proton, neutron, electron, neutrino. Atiyah–Hitchin, \(\mathbb{CP}^2\), Taub–NUT, \(S^4\).
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

- Taub–NUT metric

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m}(d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).

- Small \(r\): \(g \sim \) flat metric on \(\mathbb{R}^4\).
- Large \(r\): Hopf bundle \(S^3 \to S^2\), Chern class \(= 1\).
- Asymptotically locally flat (ALF): \(M \sim S^1\) bundle over \(S^2\) at \(\infty\).

- **Particles** = gravitational instantons. (Atiyah, Manton, Schroers).
- Charged particles = ALF instantons. Charge = Chern number of asymptotic \(S^1\) bundle.
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

- Taub–NUT metric

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi), \phi \in [0, 2\pi), \psi \in [0, 4\pi)\).

 - Small \(r\): \(g \sim\) flat metric on \(\mathbb{R}^4\).
 - Large \(r\): Hopf bundle \(S^3 \to S^2\), Chern class = 1.
 - Asymptotically locally flat (ALF): \(M \sim S^1\) bundle over \(S^2\) at \(\infty\).

- **Particles** = gravitational instantons. (**Atiyah, Manton, Schroers**).
 - Charged particles = ALF instantons. Charge = Chern number of asymptotic \(S^1\) bundle.
 - Neutral particles = compact instantons.
Particles as Gravitational Instantons

- **Gravitational instantons** = Riemannian, Einstein four manifolds \((M, g)\) whose curvature is concentrated in a finite region of a space-time.

- **Taub–NUT metric**

\[
g = \frac{r + m}{r} dr^2 + (r^2 + mr)(d\theta^2 + \sin^2 \theta d\phi^2) + \frac{rm^2}{r + m} (d\psi + \cos \theta d\phi)^2,
\]

where \(\theta \in [0, \pi)\), \(\phi \in [0, 2\pi)\), \(\psi \in [0, 4\pi)\).

 - Small \(r\): \(g \sim\) flat metric on \(\mathbb{R}^4\).
 - Large \(r\): Hopf bundle \(S^3 \rightarrow S^2\), Chern class \(= 1\).
 - Asymptotically locally flat (ALF): \(M \sim S^1\) bundle over \(S^2\) at \(\infty\).

- **Particles** = gravitational instantons. *(Atiyah, Manton, Schroers).*

 - Charged particles = ALF instantons. Charge = Chern number of asymptotic \(S^1\) bundle.
 - Neutral particles = compact instantons.
 - Proton, neutron, electron, neutrino. Atiyah–Hitchin, \(\mathbb{CP}^2\), Taub–NUT, \(S^4\).
Skyrmions from gravitational instantons

- Skyrmion from the holonomy of the spin connection (MD, 2012).
Skyrmions from gravitational instantons

- Skyrmion from the holonomy of the spin connection (MD, 2012).
- Spin connection $\Lambda^2 \cong \mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$. Taub NUT $\gamma_- = 0$.

$$\gamma_+ \in \mathfrak{su}(2) \rightarrow \text{self–dual YM on } (M, g) \rightarrow \text{Skyrmion on } M/\text{SO}(2).$$
Skyrmions from gravitational instantons

- Skyrmion from the holonomy of the spin connection (MD, 2012).
- Spin connection $\Lambda^2 \cong so(4) = so(3) \oplus so(3)$. Taub NUT $\gamma_- = 0$.

$$\gamma_+ \in su(2) \rightarrow \text{self–dual YM on } (M, g) \rightarrow \text{Skyrmion on } M/\text{SO}(2).$$

- $A = (1/2)\varepsilon_{ijk}\gamma_{ij} \otimes t_k$, where $[t_i, t_j] = -\varepsilon_{ijk}t_k$.

Skyrmions from the holonomy of the spin connection (MD, 2012).

Spin connection $\Lambda^2 \cong \mathfrak{so}(4) = \mathfrak{so}(3) \oplus \mathfrak{so}(3)$. Taub NUT $\gamma_- = 0$.

$\gamma_+ \in \mathfrak{su}(2) \rightarrow$ self–dual YM on $(M, g) \rightarrow$ Skyrmion on $M/\text{SO}(2)$.

$A = (1/2)\varepsilon_{ijk}\gamma_{ij} \otimes t_k$, where $[t_i, t_j] = -\varepsilon_{ijk}t_k$.

AH, Taub–NUT, $\mathbb{C}P^2$ are $\text{SO}(3)$ invariant. Pick $\text{SO}(2) \subset \text{SO}(3)$.

$$U(r, \psi, \theta) = \exp \left(-\pi \sum_{j=1}^{3} f_j(r)n_j t_j \right),$$

where $n = (\cos \psi \sin \theta, \sin \psi \sin \theta, \cos \theta)$ and

$$f_1 = f_2 = -\frac{r}{r + m}, \quad f_3 = \frac{r(r + 2m)}{(r + m)^2}.$$
Skyrmion on three–space \((B, h) = M/SO(2) \cong \mathbb{H}^2 \times S^1\)

\[h = h_{\mathbb{H}^2} + R^2 d\psi^2, \quad R: \mathbb{H}^2 \to \mathbb{R}. \]
Geometry of Taub–NUT Skyrmion

- Skyrmion on three-space \((\mathcal{B}, h) = M/\text{SO}(2) \cong \mathbb{H}^2 \times S^1\)
 \[h = h_{\mathbb{H}^2} + R^2 d\psi^2, \quad R : \mathbb{H}^2 \to \mathbb{R}. \]

- Upper half plane: \(h = \frac{dx^2 + dy^2}{y^2}, \quad R^2 = \frac{x^2 + y^2}{y^2(m^{-1} \sqrt{x^2 + y^2 + 1})^2 + x^2}. \)
Skyrmion on three–space \((\mathcal{B}, h) = M/\text{SO}(2) \cong \mathbb{H}^2 \times S^1\)

\[h = h_{\mathbb{H}^2} + R^2 d\psi^2, \quad R : \mathbb{H}^2 \to \mathbb{R}. \]

Upper half plane: \(h = \frac{dx^2 + dy^2}{y^2}, R^2 = \frac{x^2+y^2}{y^2(m^{-1} \sqrt{x^2+y^2+1})^2 + x^2}. \)

Poincare disc \(\mathbb{D} \to \mathbb{H}^2, x + iy = \frac{z-i}{iz-1}, \quad S^1 \to \mathcal{B} \to \mathbb{D}\)
Atiyah–Hitchin skyrmion

- $SO(3)$ invariant metrics. Let $a_i = a_i(r)$, and $d\eta_1 = \eta_2 \wedge \eta_3$ etc.

$$g = (a_2/r)^2 dr^2 + a_1 \eta_1^2 + a_2 \eta_2^2 + a_3 \eta_3^2,$$
SO(3) invariant metrics. Let $a_i = a_i(r)$, and $d\eta_1 = \eta_2 \wedge \eta_3$ etc.

$$g = \left(\frac{a_2}{r}\right)^2 dr^2 + a_1 \eta_1^2 + a_2 \eta_2^2 + a_3 \eta_3^2,$$

Self-dual spin connection

$$A = f_1(r)\eta_1 \otimes t_1 + f_2(r)\eta_2 \otimes t_2 + f_3(r)\eta_3 \otimes t_3.$$
Atiyah–Hitchin skyrmion

- $SO(3)$ invariant metrics. Let $a_i = a_i(r)$, and $d\eta_1 = \eta_2 \wedge \eta_3$ etc.
 \[g = \left(\frac{a_2}{r}\right)^2 dr^2 + a_1 \eta_1^2 + a_2 \eta_2^2 + a_3 \eta_3^2, \]

- Self-dual spin connection
 \[A = f_1(r) \eta_1 \otimes t_1 + f_2(r) \eta_2 \otimes t_2 + f_3(r) \eta_3 \otimes t_3. \]

- Topological degree
Atiyah–Hitchin skyrmion

- $SO(3)$ invariant metrics. Let $a_i = a_i(r)$, and $d\eta_1 = \eta_2 \wedge \eta_3$ etc.

\[g = \left(\frac{a_2}{r}\right)^2 dr^2 + a_1 \eta_1^2 + a_2 \eta_2^2 + a_3 \eta_3^2, \]

- Self-dual spin connection

\[A = f_1(r) \eta_1 \otimes t_1 + f_2(r) \eta_2 \otimes t_2 + f_3(r) \eta_3 \otimes t_3. \]

- Topological degree

\[B_{TN} = 2 \text{ (integration)}. \]
SO(3) invariant metrics. Let $a_i = a_i(r)$, and $d\eta_1 = \eta_2 \wedge \eta_3$ etc.

$$g = \left(\frac{a_2}{r}\right)^2 dr^2 + a_1 \eta_1^2 + a_2 \eta_2^2 + a_3 \eta_3^2,$$

Self-dual spin connection

$$A = f_1(r) \eta_1 \otimes t_1 + f_2(r) \eta_2 \otimes t_2 + f_3(r) \eta_3 \otimes t_3.$$

Topological degree

1. $B_{TN} = 2$ (integration).

2. $B_{AH} = 1$. Set $r = 2 \int_0^{\pi/2} \sqrt{1 - \sin(\beta/2)^2 \sin(\tau)^2}^{-2} d\tau$.
Outlook

- Solitons (vortices, skyrmions) induced by the geometry of space–time.
Outlook

- Solitons (vortices, skyrmions) induced by the geometry of space–time.
- Topological charges (vortex number, baryon number) = Characteristic classes the Levi–Civita connection (Euler characteristic, Hirzebruch signature).
Outlook

- Solitons (vortices, skyrmions) induced by the geometry of space–time.
- Topological charges (vortex number, baryon number) = Characteristic classes the Levi–Civita connection (Euler characteristic, Hirzebruch signature).
- Explicit solutions.
Outlook

- Solitons (vortices, skyrmions) induced by the geometry of space–time.
- Topological charges (vortex number, baryon number) = Characteristic classes the Levi–Civita connection (Euler characteristic, Hirzebruch signature).
- Explicit solutions.
- Particles as four–manifolds.
Solitons (vortices, skyrmions) induced by the geometry of space–time.

Topological charges (vortex number, baryon number) = Characteristic classes the Levi–Civita connection (Euler characteristic, Hirzebruch signature).

Explicit solutions.

Particles as four–manifolds.

Thank You.