\(\mathbb{CP}^2 \) (baby) Skyrmions in three component superconductors

Originially: Topological solitons in multi-component superconductors: from baby-Skyrmions to vortex loops.

Julien Garaud

with

J. Carlström, M. Speight and E. Babaev

Department of Physics, University of Massachusetts
Amherst, MA 01003, USA

Quantised Flux in Tightly Knotted and Linked Systems – Dec, 7-th, 2012
based on J. Garaud, J. Carlström, E. Babaev and M. Speight

Topological solitons in three-band superconductors with broken time reversal symmetry,

Chiral \mathbb{CP}^2 skyrmions in three-band superconductors,

Length scales, collective modes, and type-1.5 regimes in three-band superconductors,

Additional (movie) material
http://people.umass.edu/garaud/3CGL-soliton.html
Motivations

Growing importance of multi-component/band superconductors

- Growing number of known multi-component-multi-band material
- Iron pnictides are possibly described by more than two superconducting components.
- Possible states with time reversal symmetry breakdown.
 - T. K. Ng, N. Nagaosa; Europhys. Lett. 87, 17 003 (2009)
Motivations

Growing importance of multi-component/band superconductors

- Growing number of known multi-component/multi-band material
- Iron pnictides are possibly described by more than two superconducting components.
- Possible states with time reversal symmetry breakdown.
 T. K. Ng, N. Nagaosa; Europhys. Lett. 87, 17 003 (2009)

Can be achieved with long Josephson junctions (or bilayers)

- by investigating Josephson effect between a two-band (with s_{\pm} pairing) and a conventional s-wave superconductors.
- the s_{\pm} interband couplings, lock phases to π
 \Rightarrow frustration induced Broken TRS state (BTRS)
Multicomponent Ginzburg-Landau model

Three complex scalars \(\psi_a = |\psi_a| \exp i\varphi_a \) are the SC condensate

\[
F_{3\text{GL}} = \frac{1}{2} (\nabla \times A)^2 + \frac{1}{2} \sum_{a=1}^{3} |(\nabla + i e A)\psi_a|^2 + (2\alpha_a + \beta_a |\psi_a|^2)|\psi_a|^2
- \sum_{b>a}^{3} \eta_{ab} |\psi_a| |\psi_b| \cos \varphi_{ab}
\]

where \(\varphi_{ab} \equiv \varphi_b - \varphi_a \).
Multicomponent Ginzburg-Landau model

Three complex scalars $\psi_a = |\psi_a| \exp i \varphi_a$ are the SC condensate

$$\mathcal{F}_{3\text{CGL}} = \frac{1}{2} (\nabla \times A)^2 + \frac{1}{2} \sum_{a=1}^{3} |(\nabla + i e A) \psi_a|^2 + (2 \alpha_a + \beta_a |\psi_a|^2) |\psi_a|^2$$

- 3 self-interacting complex fields, ψ_a representing the superconducting condensate (i.e. the order parameter).
Multicomponent Ginzburg-Landau model

Three complex scalars \(\psi_a = |\psi_a| \exp i \varphi_a \) are the SC condensate

\[
\mathcal{F}_{3\text{CGL}} = \frac{1}{2} (\nabla \times \mathbf{A})^2 + \frac{1}{2} \sum_{a=1}^{3} |(\nabla + i e \mathbf{A})\psi_a|^2 + (2 \alpha_a + \beta_a |\psi_a|^2)|\psi_a|^2
\]

- 3 self-interacting complex fields, \(\psi_a \) representing the superconducting condensate (i.e. the order parameter).
- charged under the same U(1) gauge field (\(\mathbf{A} \) is the vector potential of the magnetic field \(\nabla \times \mathbf{A} \)). \(e \) parametrizes the London penetration depth \(\lambda = \frac{1}{e \sqrt{\sum_a |\psi_a|^2}} \)
Multicomponent Ginzburg-Landau model

Three complex scalars $\psi_a = |\psi_a| \exp i \varphi_a$ are the SC condensate

$$F_{\text{3CGL}} = \frac{1}{2} (\nabla \times A)^2 + \frac{1}{2} \sum_{a=1}^{3} |(\nabla + ieA)\psi_a|^2 + (2\alpha_a + \beta_a |\psi_a|^2)|\psi_a|^2$$

$$- \sum_{b > a}^{3} \eta_{ab} |\psi_a||\psi_b| \cos \varphi_{ab} \quad \text{where} \quad \varphi_{ab} \equiv \varphi_b - \varphi_a .$$

- 3 self-interacting complex fields, ψ_a representing the superconducting condensate (i.e. the order parameter).
- charged under the same U(1) gauge field (A is the vector potential of the magnetic field $\nabla \times A$). e parametrizes the London penetration depth $\lambda = \frac{1}{e \sqrt{\sum_a |\psi_a|^2}}$
- Josephson interband interaction. Couple all ψ_a's. It breaks the global U(1)3 symmetry of the potential down to U(1).
Elementary excitations in multi-component SCs

Basic excitations are fractional vortices

- *i.e.* only one condensate has 2π phase winding:

 \[\Delta \varphi_1 = \oint \nabla \varphi_1 = 2\pi, \quad \Delta \varphi_2 = \oint \nabla \varphi_2 = 0, \quad \Delta \varphi_3 = \oint \nabla \varphi_3 = 0 \]

- each condensate carries a fraction of magnetic flux:

 \[\Phi_a = \oint A \mathrm{d}\ell = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \frac{1}{e} \oint \nabla \varphi_a = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \Phi_0 \]

⇒ usually fractional vortices cannot be observed, since strongly bound
Elementary excitations in multi-component SCs

Basic excitations are fractional vortices

- *i.e.* only one condensate has 2π phase winding:
 \[
 \Delta \varphi_1 = \oint \nabla \varphi_1 = 2\pi, \quad \Delta \varphi_2 = \oint \nabla \varphi_2 = 0, \quad \Delta \varphi_3 = \oint \nabla \varphi_3 = 0
 \]

- each condensate carries a fraction of magnetic flux:
 \[
 \Phi_a = \oint A d\ell = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \frac{1}{e} \oint \nabla \varphi_a = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \Phi_0
 \]

- Only $\Delta \varphi_1 = \Delta \varphi_2 = \Delta \varphi_3 = 2\pi$ has finite energy (per unit length).
 \(
 \Rightarrow \text{Total} \text{ flux is quantized } \Phi \equiv \sum_a \Phi_a = \Phi_0
 \)

- Else, energy is logarithmically divergent if $\eta_{ab} = 0$
 or linearly divergent if $\eta_{ab} \neq 0$

\(\Rightarrow\) usually fractional vortices cannot be observed, since strongly bound
Elementary excitations in multi-component SCs

Basic excitations are fractional vortices

- \(\Delta \phi_1 = \oint \nabla \phi_1 = 2\pi \), \(\Delta \phi_2 = \oint \nabla \phi_2 = 0 \), \(\Delta \phi_3 = \oint \nabla \phi_3 = 0 \)

- Each condensate carries a fraction of magnetic flux:
 \[
 \Phi_a = \oint A d\ell = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \oint \nabla \phi_a = \frac{|\psi_a|^2}{\sum_b |\psi_b|^2} \Phi_0
 \]

- Only \(\Delta \phi_1 = \Delta \phi_2 = \Delta \phi_3 = 2\pi \) has finite energy (per unit length).
 \(\Rightarrow \) Total flux is quantized \(\Phi \equiv \sum_a \Phi_a = \Phi_0 \)

- Else, energy is logarithmically divergent if \(\eta_{ab} = 0 \)
 or linearly divergent if \(\eta_{ab} \neq 0 \)

- This means fractional vortices are logarithmically bound if \(\eta_{ab} = 0 \)
 or linearly bound \(\eta_{ab} \neq 0 \)

\(\Rightarrow \) usually fractional vortices cannot be observed, since strongly bound
Frustration in three component systems

Back to full Ginzburg–Landau, look at the Josephson terms:

$$\mathcal{F}_{3\text{CGL}} = \cdots - \sum_{b>a}^{3} \eta_{ab} |\psi_a| |\psi_b| \cos \varphi_{ab}$$

where

$$\varphi_{ab} \equiv \varphi_b - \varphi_a.$$

- Each Josephson term **anti-locks** the phases ($\varphi_{ab} = \pi$) for $\eta_{ab} < 0$.

$$\varphi_{1} \equiv 0, \quad \varphi_{2} = \frac{2\pi}{3}, \quad \varphi_{3} = -\frac{2\pi}{3}$$
Frustration in three component systems

Back to full Ginzburg–Landau, look at the Josephson terms:

\[F_{3\text{CGL}} = \cdots - \sum_{b>a}^{3} \eta_{ab} |\psi_a| |\psi_b| \cos \varphi_{ab} \]

where \(\varphi_{ab} \equiv \varphi_b - \varphi_a \).

Each Josephson term anti-locks the phases (\(\varphi_{ab} = \pi \)) for \(\eta_{ab} < 0 \).

A simple example of frustration

- if \(\alpha_a = -1, \beta_a = 1 \) and \(\eta_{ab} = -1 \), one cannot have all phases differences \(\varphi_{ab} = \pi \).
- Then the ground state phases are (\(\varphi_1 \equiv 0 \))
 \[\varphi_2 = \frac{2\pi}{3} \text{ and } \varphi_3 = \frac{-2\pi}{3} \]
 or
 \[\varphi_2 = \frac{-2\pi}{3} \text{ and } \varphi_3 = \frac{2\pi}{3} \]

Here frustration \(\Rightarrow U(1) \times \mathbb{Z}_2 \) discrete symmetry of the ground state.
(spartaneously Broken Time Reversal Symmetry state)
Ground state in frustrated 3 component systems

To visualize, compute the minimal potential energy for a given phase configuration $\mathcal{F}_{pot}(\varphi_1 = 0, \varphi_2, \varphi_3)$

Time Reversal Symmetric ground state

- When all Josephson couplings lock the phases to zero *e.g.* all $\eta_{ab} > 0$
- A unique minimum $\Rightarrow U(1)$ symmetric ground state
Ground state in frustrated 3 component systems

To visualize, compute the minimal potential energy for a given phase configuration $\mathcal{F}_{\text{pot}}(\varphi_1 = 0, \varphi_2, \varphi_3)$

Broken Time Reversal Symmetric ground state

- When Josephson couplings are frustrated e.g. all $\eta_{ab} < 0$
- Two discrete minima
 $\Rightarrow U(1) \times \mathbb{Z}_2$ symmetric ground state

![Potential energy surface](image.png)
Ground state in frustrated 3 component systems

To visualize, compute the minimal potential energy for a given phase configuration $\mathcal{F}_{\text{pot}}(\varphi_1 = 0, \varphi_2, \varphi_3)$

Broken Time Reversal Symmetric ground state

- When Josephson couplings are frustrated e.g. all $\eta_{ab} < 0$

- Two discrete minima
 $\Rightarrow U(1) \times \mathbb{Z}_2$ symmetric ground state
U(1) \times \mathbb{Z}_2 symmetric ground state, \(\mathbb{CP}^2 \) Skyrmions

Discrete symmetry \(\Rightarrow \) Domain-wall are natural solutions

- Interpolate between inequivalent TRS broken state (\(\mathbb{Z}_2 \) states)
- Closed domain-wall is **unstable** to collapse because of its line tension.
U(1) × Z₂ symmetric ground state, CP² Skyrmions

Discrete symmetry ⇒ Domain-wall are natural solutions

- Interpolate between inequivalent TRS broken state (Z₂ states)
- Closed domain-wall is **unstable** to collapse because of its line tension.
- Domain wall has energetically unfavorable values of cos ϕ_{ab} ⇒ split integer vortices into fractional vortices
- More favorable phase gradients between vortices on the DW ⇒ vortices are confined on the domain-wall
U(1) \times \mathbb{Z}_2 \text{ symmetric ground state, } \mathbb{CP}^2 \text{ Skyrmions}

Discrete symmetry }\Rightarrow\text{ Domain-wall are natural solutions

- Interpolate between inequivalent TRS broken state (\(\mathbb{Z}_2\) states)
- Closed domain-wall is\textit{ unstable} to collapse because of its line tension.
- Domain wall has energetically unfavorable values of \(\cos \varphi_{ab}\)
 \(\Rightarrow\) split integer vortices into \textit{fractional vortices}
- More favorable phase gradients between vortices on the DW
 \(\Rightarrow\) vortices are confined on the domain-wall

Composite vortex/domain-wall solitons are in fact Chiral Skyrmion

- If vortex interaction is \textit{repulsive} enough (repulsion between fractionnal vortices), captured vortices can stabilize the domain wall.

\textit{Chiral} refers to different TRSB states, i.e. different ground-state phases
Skyrmion’s structure \((\eta_{ab} = -3; \alpha_a, \beta_a = 1; N = 5) \)

B

\[
\begin{align*}
|\psi_1| |\psi_2| \sin \varphi_{12} & \quad |\psi_1| |\psi_3| \sin \varphi_{13}
\end{align*}
\]

Chiral skyrmion’s features

- Ringlike Magnetic field, spread along the domain wall
- Phase difference \(\sin \varphi_{12} \) interpolate between the two inequivalent ground states \(-2\pi/3\) and \(2\pi/3\)

\[
\Rightarrow \quad \text{Domain-wall}
\]
Skyrmion’s structure ($\eta_{ab} = -3; \alpha_a, \beta_a = 1; N = 5$)

Chiral skyrmion’s features

- Singularity for each component do not superimpose
 ⇒ fractionalized vortices
- Even with Josephson interaction
Skyrmion’s structure \((\eta_{ab} = -3; \alpha_a, \beta_a = 1; N = 5)\)

| \(J_1|^2 || J_2|^2 || J_3|^2 |
|-----------------|----------------|----------------|

Chiral skyrmion’s features

- Nice current structure
- Supercurrents for each component do not superimpose
Skyrmions topology – Chirality

Topological invariant classifying the maps $\psi : \mathbb{R}^2 \rightarrow \mathbb{C}^3$

\[
Q(\psi) = \int_{\mathbb{R}^2} \frac{i\epsilon_{ij}}{2\pi|\psi|^4} \left[|\psi|^2 \partial_i \psi^\dagger \partial_j \psi + \psi^\dagger \partial_i \psi \partial_j \psi^\dagger \psi \right] d^2x \in \mathbb{N},
\]

where $\psi^\dagger = (\psi_1^*, \psi_2^*, \psi_3^*)$ denotes the vector of the 3 complex fields ($\psi \neq 0$).
Skyrmions topology – Chirality

Topological invariant classifying the maps $\Psi : \mathbb{R}^2 \rightarrow \mathbb{C}^3$

$$Q(\Psi) = \int_{\mathbb{R}^2} \frac{i\epsilon_{ij}}{2\pi|\Psi|^4} \left[|\Psi|^2 \partial_i \Psi^\dagger \partial_j \Psi + \Psi^\dagger \partial_i \Psi \partial_j \Psi^\dagger \Psi \right] d^2x \quad \in \mathbb{N},$$

where $\Psi^\dagger = (\psi_1^*, \psi_2^*, \psi_3^*)$ denotes the vector of the 3 complex fields ($\Psi \neq 0$).

The order of fractional vortices matters \Rightarrow Chirality

- For a given vacuum (same outer phases), different ordering gives different skyrmions
 - Left unfavorable
 - Right favorable since inner phases are vacuum
Spin texture $S \equiv \frac{\psi^\dagger \sigma \psi}{\psi^\dagger \psi}$, of a $Q = 1$ skyrmion
Spin texture $S \equiv \frac{\psi^\dagger \sigma \psi}{\psi^\dagger \psi}$, of a $Q = 5$ skyrmion.
Plenty of solutions with unusual magnetic filed
Chiral skyrmions are (meta–)stable

They are very robust, here stable against 80% white noise
Physical properties of \mathbb{CP}^2 Chiral skyrmions

\mathbb{CP}^2 skyrmions are thermodynamically stable ($\frac{1}{2} H_{c1}^2 - |\mathcal{F}(\langle \psi_i \rangle, 0)| < 0$)

- are more energetic than vortices, but few percent only
 \Rightarrow excited by thermal fluctuations or by quenching
 \Rightarrow Metastable

- add $\sum_{b > a} \gamma_{ab} |\psi_a|^2 |\psi_b|^2$ to enhance vortex splitting
 \Rightarrow Absolute minima
 \Rightarrow trivially induced in applied field
Physical properties of \(\mathbb{CP}^2 \) Chiral skyrmions

\(\mathbb{CP}^2 \) skyrmions are thermodynamically stable \(\frac{1}{2} H_{c1}^2 - |\mathcal{F}(\langle \psi_i \rangle, 0)| < 0 \)

- are more energetic than vortices, but few percent only
 - excited by thermal fluctuations or by quenching
 \(\Rightarrow \) Metastable
- add \(\sum_{b>a} \gamma_{ab} |\psi_a|^2 |\psi_b|^2 \) to enhance vortex splitting
 \(\Rightarrow \) Absolute minima
 \(\Rightarrow \) trivially induced in applied field

Plausible formation mechanisms suggested by numerics

- Relaxing an initially dense vortex cluster \([\text{Movie}]\)
- Trapping vortices on a domain wall \([\text{Movie}]\)
Physical properties of \mathbb{CP}^2 Chiral skyrmions

\mathbb{CP}^2 skyrmions are thermodynamically stable \(\left(\frac{1}{2} H_{c1}^2 - |F(\langle \psi_i \rangle, 0)| < 0 \right) \)

- are more energetic than vortices, but few percent only \(\Rightarrow \) metastable
 - excited by thermal fluctuations or by quenching
- add $\sum_{b>a}^3 \gamma_{ab} |\psi_a|^2 |\psi_b|^2$ to enhance vortex splitting \(\Rightarrow \) absolute minima
 - trivially induced in applied field

Plausible formation mechanisms suggested by numerics

- Relaxing an initially dense vortex cluster [Movie]
- Trapping vortices on a domain wall [Movie]

Chiral skyrmions could be observable signature of TRSB states

They are very generic when the ground state exhibit $U(1) \times \mathbb{Z}_2$ symmetry.
Vortex pair as a $N = 2$, chiral skyrmion

- Magnetic field is peaked near vortices of the component with much more density and spread along the domain-wall
- Phase difference $\sin \varphi_{12}$ interpolate between the two inequivalent ground states $-\pi/2$ and $\pi/2$ ⇒ Domain-wall

Skyrmion’s features separation is several λ
Vortex pair as a $N = 2$, chiral skyrmion

Chiral skyrmion

Vortex pairs from Kalisky et al.

Skyrmion’s features

- however we still miss informations about the origin of vortex pairs
- also there is strong pinning in these materials

separation is several λ
Introduction

Vortex matter in phase frustrated three-component GL

Multicomponent Ginzburg-Landau and frustrated systems

Topological solitons in three component system \(\mathbb{CP}^2 \) Skyrmions

Summary

Chiral skyrmions could be an observable signature of TRSB states

- very exotic profile of magnetic field should be detected in scanning SQUID, scan Hall or magnetic force microscopy experiments
- Their counterparts exist also in two component systems where TRSB is broken by the underlying symmetries, and not by frustration. i.e. terms like \(\text{Re}(\psi_1^* \psi_2^2) \) for example in chiral \(p \)-wave superconductors, like \(\text{Sr}_2\text{RuO}_4 \). see JG and E. Babaev; Phys. Rev. B, 86, 060514(R) (2012)
Summary

Chiral skyrmions could be an observable signature of TRSB states

- very exotic profile of magnetic field should be detected in scanning SQUID, scan Hall or magnetic force microscopy experiments
- Their counterparts exist also in two component systems where TRSB is broken by the underlying symmetries, and not by frustration. i.e. terms like \(\text{Re}(\psi_1^* \psi_2^2) \) for example in chiral \(p \)-wave superconductors, like \(\text{Sr}_2\text{RuO}_4 \). see JG and E. Babaev; Phys. Rev. B, 86, 060514(R) (2012)

Still quite a lot open questions

- How can they influence phase transitions?
- Very complicated interactions, long-range repulsive, short-range attractive. Orientation dependent.
- Are there ordered structures, Skyrmion lattices?
Introduction

Vortex matter in phase frustrated three-component GL

Multicomponent Ginzburg-Landau and Frustarted systems
Topological solitons in three component system ($\mathbb{C}P^2$ Skyrmions)

Thank you for your attention!

JG, J. Carlström and E. Babaev
Topological solitons in three-band superconductors with broken time reversal symmetry,
arXiv:1107.0995 [cond-mat].
Movies at http://people.umass.edu/garaud/3CGL-soliton.html

J. Carlström, JG and E. Babaev
Length scales, collective modes, and type-1.5 regimes in three-band superconductors,
arXiv:1107.4279 [cond-mat].

JG, J. Carlström, E. Babaev and M. Speight
Chiral $\mathbb{C}P^2$ skyrmions in three-band superconductors,
preprint (2012),
arXiv:1211.4342 [cond-mat].
JG, J. Carlström and E. Babaev

Topological solitons in three-band superconductors with broken time reversal symmetry,
Movies at http://people.umass.edu/garaud/3CGL-soliton.html

J. Carlström, JG and E. Babaev

Length scales, collective modes, and type-1.5 regimes in three-band superconductors,

JG, J. Carlström, E. Babaev and M. Speight

Chiral \mathbb{CP}^2 skyrmions in three-band superconductors,

Julien Garaud

\mathbb{CP}^2 Skyrmions in three component superconductors
Introduction

Vortex matter in phase frustrated three-component GL

Multicomponent Ginzburg-Landau and Frustarted systems

Topological solitons in three component system ($\mathbb{C}P^2$ Skyrmions)

Thank you for your attention!

JG, J. Carlström and E. Babaev

Topological solitons in three-band superconductors with broken time reversal symmetry,

arXiv:1107.0995 [cond-mat].

Movies at http://people.umass.edu/garaud/3CGL-soliton.html

J. Carlström, JG and E. Babaev

Length scales, collective modes, and type-1.5 regimes in three-band superconductors,

arXiv:1107.4279 [cond-mat].

JG, J. Carlström, E. Babaev and M. Speight

Chiral $\mathbb{C}P^2$ skyrmions in three-band superconductors,

preprint (2012),

arXiv:1211.4342 [cond-mat].
Thank you for your attention!

JG, J. Carlström and E. Babaev

Topological solitons in three-band superconductors with broken time reversal symmetry,
Movies at http://people.umass.edu/garaud/3CGL-soliton.html

J. Carlström, JG and E. Babaev

Length scales, collective modes, and type-1.5 regimes in three-band superconductors,

JG, J. Carlström, E. Babaev and M. Speight

Chiral $\mathbb{C}P^2$ skyrmions in three-band superconductors,
More Chiral skyrmions

\(\text{CP}^2 \) Skyrmions are very generic and robust

Here, one of the component has much more density than the others. The solution carries \(N = 3 \) flux quanta.
More Chiral skyrmions

\[\sin \varphi_{12} \quad \sin \varphi_{13} \]

\(\mathbb{CP}^2 \) Skyrmions are very generic and robust here, one of the component has much more density than the others, the solution carries \(N = 5 \) flux quanta.
More Chiral skyrmions

$\mathbb{C}P^2$ Skyrmions are very generic and robust

another $\mathbb{C}P^2$ soliton with $N = 3$
More Chiral skyrmions

\mathbb{CP}^2 Skyrmions are very generic and robust

another \mathbb{CP}^2 soliton with $N = 5$
Multi chiral skyrmions

(Alternating) multiple Skyrmions are also easily constructed

Two chiral solitons, a $N = 7$ inside $N = 13$
Multi chiral skyrmions

(Alternating) multiple Skyrmions are also easily constructed

Three chiral solitons, a $N = 6$ inside $N = 12$ himself in a $N = 18$
Skyrmions are generic solutions of $\text{U}(1) \times \mathbb{Z}_2$ BTRS

Adding a term $\sum_{b>a}^{3} \gamma_{ab} |\psi_a|^2 |\psi_b|^2$ enhances vortex splitting

- Skyrmions can be less energetic than vortices \Rightarrow ground state
- They are thermodynamically stable when $\frac{1}{2} H_{c1}^2 - |\mathcal{F}(\langle \psi_i \rangle, 0)| < 0$

Here fixed $e = 0.3$ and different curves are different γ_{ab}.
For large enough γ_{ab}, Skyrmions are preferred over vortices
Skyrmions are generic solutions of $U(1) \times \mathbb{Z}_2$ BTRS

Adding a term $\sum_{b>a}^{3} \gamma_{ab} |\psi_a|^2 |\psi_b|^2$ enhances vortex splitting

- Skyrmions can be less energetic than vortices \Rightarrow ground state
- They are thermodynamically stable when $\frac{1}{2} H_{c1}^2 - |\mathcal{F}(\langle\psi_i\rangle, 0)| < 0$

Here fixed $e = 0.3$ and different curves are different γ_{ab}. For large enough γ_{ab}, Skyrmions are preferred over vortices.