

Round Table Discussion

Archetypal problem

Good: Mathematicians learn from physicists

Better: Mathematicians and theoretical physicists learn from experimental physicists and chemists Methods:

Monte Carlo Molecular dynamics

PDE algorithms Finite element

Discussion point #1

Lemma:

If minimizing your free energy gives you crazy results, then you are minimizing the wrong free energy.

Two methods are missing from the list. What happened to them?

- 1. Construct variational ansatz, insert into free energy, minimize over parameters.
- Don't just minimize over order parameters;
 integrate over order parameters to account for thermal fluctuations.

Polydispersity as an axis in a phase diagram

- Methods to treat polydispersity
 - Know how to describe systems with 2 components (or a small number of components)
 ⇒ 2-phase coexistence regions in phase diagram
 - Does new behavior emerge when there are many components?
- Effects of polydispersity
 - On crystalline or smectic order
 - On orientational order

Among all the topics discussed in this workshop, we have seen a strong emphasis on modeling biaxial nematic phase.

- Why?
 - Experimental controversy?
 - Technological applications?
- Principles that can be applied to other types of order?
 - Polar
 - Generalized nematic: Cubatic, tetrahedratic
 - Quasicrystalline