Positive Semidefinite Rank of Polytopes

Richard Robinson

University of Washington

Polynomial Optimization Workshop - July 19, 2013
Joint work with

Rekha Thomas
University of Washington

João Gouveia
University of Coimbra
Let S^f_+ be the cone of $r \times r$ psd matrices. Given a polytope P with f facets, we can always write P as the projection of an affine slice of S^f_+. In fact, we can write it as a spectrahedron.

\[P = \left\{ x \mid a_i^T x + b_i \geq 0 \text{ for all } i = 1, \ldots, f \right\} \]

\[= \left\{ x \mid \text{diag}(a_1^T x + b_1, \ldots, a_f^T x + b_f) \succeq 0 \right\} \]

Question: Given P, what is the smallest psd cone that admits an affine slice that projects to P?
For a graph $G = ([n], E)$, consider the stable set polytope $\text{STAB}(G)$.

Define $\text{TH}(G)$ to be $x \in \mathbb{R}^n$ such that

$$
\begin{pmatrix}
1 & x^T \\
x & U
\end{pmatrix} \succeq 0
$$

for some U with $\text{diag}(U) = x$ and $U_{ij} = 0$ for $\{i, j\} \in E$.

Properties:
- $\text{TH}(G) \supseteq \text{STAB}(G)$ since $(1, x) \cdot (1, x)^T \succeq 0$.
- The containment is tight iff G is perfect.
- $\text{TH}(G)$ is a projection of an affine slice of the PSD cone of dimension $n + 1$.

Richard Robinson (UW) Positive Semidefinite Rank of Polytopes 7/19/13 4 / 16
For a graph $G = ([n], E)$, consider the stable set polytope $\text{STAB}(G)$.

Define $\text{TH}(G)$ to be $x \in \mathbb{R}^n$ such that

$$
\begin{pmatrix}
1 & x^T \\
x & U
\end{pmatrix} \succeq 0
$$

for some U with $\text{diag}(U) = x$ and $U_{ij} = 0$ for $\{i, j\} \in E$.

Properties:

- $\text{TH}(G) \supseteq \text{STAB}(G)$ since $(1, x) \cdot (1, x)^T \succeq 0$
- The containment is tight iff G is perfect
- $\text{TH}(G)$ is a projection of an affine slice of the psd cone of dimension $n + 1$
A **psd lift** of P is an affine space L and a linear map π with $P = \pi(L \cap S^r_+)$.

Example

Let $P = [0, 1]^2$. Then:

$$P = \left\{ (x, y) : \exists z \text{ with } \begin{bmatrix} 1 & x & y \\ x & x & z \\ y & z & y \end{bmatrix} \succeq 0 \right\}$$
A **psd lift** of P is an affine space L and a linear map π with $P = \pi(L \cap S^r_+)$.

Example

Let $P = [0, 1]^2$. Then:

$$P = \left\{ (x, y) : \exists z \text{ with } \begin{bmatrix} 1 & x & y \\ x & x & z \\ y & z & y \end{bmatrix} \succeq 0 \right\}$$

We define $xc_{psd}(P) = \min(r \mid P = \pi(L \cap S^r_+))$. This measures how well semidefinite programming can express P.
Given P, we would like to know $x_{c_{psd}}(P)$.
slack matrices

Given P, we would like to know $xc_{psd}(P)$

Let P be a polytope defined by the f inequalities $b_j - A_j^T x \geq 0$ and with v vertices p_1, \ldots, p_v. Then we define the slack matrix to be $S \in \mathbb{R}^{v \times f}_+$ with $S_{ij} = b_j - A_j^T p_i$.

Example
This is a slack matrix for the displayed trapezoid.

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{bmatrix}
\]
slack matrices

Given P, we would like to know $xc_{psd}(P)$

Let P be a polytope defined by the f inequalities $b_j - A_j^T x \geq 0$ and with v vertices p_1, \ldots, p_v. Then we define the **slack matrix** to be $S \in \mathbb{R}_+^{v \times f}$ with $S_{ij} = b_j - A_j^T p_i$.

Example

This is a slack matrix for the displayed trapezoid.

\[
\begin{array}{cccc}
& F1 & F2 & F3 & F4 \\
(1,0) & 0 & 1 & 1 & 0 \\
(2,1) & 0 & 0 & 2 & 1 \\
(0,1) & 2 & 0 & 0 & 1 \\
(0,0) & 1 & 1 & 0 & 0 \\
\end{array}
\]
psd rank of matrices

Recall the matrix inner product \(\langle A, B \rangle = \text{tr}(A^T B) \).

Given a nonnegative matrix \(M \in \mathbb{R}_{+}^{m \times n} \), the **psd rank** of \(M \) is the smallest number \(r \) such that there exist \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_n \) in the cone \(S_+^r \) with \(M_{ij} = \langle A_i, B_j \rangle \).
Recall the matrix inner product \(\langle A, B \rangle = \text{tr}(A^T B) \).

Given a nonnegative matrix \(M \in \mathbb{R}_+^{m \times n} \), the **psd rank** of \(M \) is the smallest number \(r \) such that there exist \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_n \) in the cone \(S_r^+ \) with \(M_{ij} = \langle A_i, B_j \rangle \).

Example

\[
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -0.5 \\ -0.5 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}
\]
Yannakakis’ result on nonnegative rank can be generalized to the following:

Theorem (Fiorini, et. al; Gouveia, et. al ’12)

Given a polytope P with slack matrix S_P, we have $\text{xc}_{\text{psd}}(P) = \text{rank}_{\text{psd}}(S_P)$

Difficulty of calculating psd rank of a matrix usually prevents us from applying the theorem directly. Can we find bounds?
nonnegative rank

If we replace S^r_+ with \mathbb{R}^r_+ in the definition of xc_{psd} and rank_{psd}, we get Yannakakis’ result on the nonnegative rank of a polytope, $xc(P) = \text{rank}_+ (S_P)$.

$xc(P)$ measures how efficiently P can be represented as the projection of a higher dimensional polyhedron.

\[
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
\begin{pmatrix}
1 \\
0.5
\end{pmatrix}
\begin{pmatrix}
2 \\
1 \\
1
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}
\begin{pmatrix}
2.5 \\
1
\end{pmatrix}
\]

Many results have been shown in this context (optimal lifts for permutahedron and regular n-gons, nonexistence of small lifts of the cut polytope, NP-hardness of nonnegative rank factorization).
For general nonnegative matrices M, we have:

$$\frac{1}{2} \sqrt{1 + 8 \text{rank}(M)} - \frac{1}{2} \leq \text{rank}_{\text{psd}}(M)$$
For general nonnegative matrices M, we have:
\[\frac{1}{2} \sqrt{1 + 8 \text{rank}(M)} - \frac{1}{2} \leq \text{rank}_{\text{psd}}(M) \]

Theorem (Gouveia, R., Thomas), (Lee, Theis ’12)

Let $P \subset \mathbb{R}^n$ be a full-dimensional polytope. Then
\[\text{rank}_{\text{psd}}(S_P) \geq \text{rank}(S_P) = n + 1. \]

So the lift of the square we saw earlier was optimal!
psd rank lower bound

For general nonnegative matrices M, we have:

$$\frac{1}{2} \sqrt{1 + 8 \text{rank}(M)} - \frac{1}{2} \leq \text{rank}_{\text{psd}}(M)$$

Theorem (Gouveia, R., Thomas), (Lee, Theis ’12)

Let $P \subset \mathbb{R}^n$ be a full-dimensional polytope. Then

$$\text{rank}_{\text{psd}}(S_P) \geq \text{rank}(S_P) = n + 1.$$

So the lift of the square we saw earlier was optimal!

Question: Which polytopes have psd rank $n + 1$?
A nonnegative matrix M has many possible entrywise square roots

$$
\begin{pmatrix}
1 & 2 \\
0 & 1 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
-1 & \sqrt{2} \\
0 & 1 \\
\end{pmatrix}, \begin{pmatrix}
-1 & -\sqrt{2} \\
0 & 1 \\
\end{pmatrix}, ...
$$

Definition

The **square root rank** of M is $\text{rank} \sqrt{M} = \min \{ \text{rank} \sqrt{M} \}$.
A nonnegative matrix M has many possible entrywise square roots

$$
\begin{pmatrix}
1 & 2 \\
0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-1 & \sqrt{2} \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -\sqrt{2} \\
0 & 1
\end{pmatrix},...
$$

Definition

The **square root rank** of M is $\sqrt{\text{rank}} \ (M) = \min \{ \text{rank} \sqrt{M} \}$.

By writing a rank one psd matrix as uu^T and noting that

$$
\langle uu^T, vv^T \rangle = \langle u, v \rangle^2,
$$

we see that $\sqrt{\text{rank}} \ (M)$ is equivalent to psd rank restricted to using only rank one matrices. Hence,

$$
\text{rank}_{\text{psd}} \ (M) \leq \sqrt{\text{rank}} \ (M).
$$
square root rank

Example

Let M be the derangement matrix:

$$
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{bmatrix}
$$

Then we have $\text{rank}(M) = 3$ but $\text{rank}(\sqrt{M}) = 2$ due to the square root

$$
\begin{bmatrix}
0 & -1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{bmatrix}
$$
psd minimal polytopes

Theorem (Gouveia, R., Thomas)

An n-dimensional polytope P has psd rank $n + 1$ if and only if $\text{rank} (\sqrt{S_P}) = n + 1$.

The psd minimal polytopes in \mathbb{R}^2 and \mathbb{R}^3 are the triangles, quadrilaterals, tetrahedra, triangular bipyramids, quadrilateral pyramids, triangular prisms, biplanar octahedra, and biplanar cuboids.

psd rank is not constant over combinatorial type or oriented matroid.

Can we come up with a geometric classification?

All-positive square root has been sufficient, is this true in general?
Theorem (Gouveia, R., Thomas)

An n-dimensional polytope P has psd rank $n + 1$ if and only if $\text{rank}_{\sqrt{\cdot}}(S_P) = n + 1$.

The psd minimal polytopes in \mathbb{R}^2 and \mathbb{R}^3 are the triangles, quadrilaterals, tetrahedra, triangular bipyramids, quadrilateral pyramids, triangular prisms, biplanar octahedra, and biplanar cuboids.
Theorem (Gouveia, R., Thomas)

An n-dimensional polytope P has psd rank $n + 1$ if and only if $\text{rank} \sqrt[\to]{S_P} = n + 1$.

The psd minimal polytopes in \mathbb{R}^2 and \mathbb{R}^3 are the triangles, quadrilaterals, tetrahedra, triangular bipyramids, quadrilateral pyramids, triangular prisms, biplanar octahedra, and biplanar cuboids.

Psd rank is not constant over combinatorial type or oriented matroid.
Theorem (Gouveia, R., Thomas)

An n-dimensional polytope P has psd rank $n + 1$ if and only if $\text{rank} \sqrt{-}(S_P) = n + 1$.

The psd minimal polytopes in \mathbb{R}^2 and \mathbb{R}^3 are the triangles, quadrilaterals, tetrahedra, triangular bipyramids, quadrilateral pyramids, triangular prisms, biplanar octahedra, and biplanar cuboids.

psd rank is not constant over combinatorial type or oriented matroid.

- Can we come up with a geometric classification?
Theorem (Gouveia, R., Thomas)

An n-dimensional polytope P has psd rank $n + 1$ if and only if $\text{rank} \sqrt{(S_P)} = n + 1$.

The psd minimal polytopes in \mathbb{R}^2 and \mathbb{R}^3 are the triangles, quadrilaterals, tetrahedra, triangular bipyramids, quadrilateral pyramids, triangular prisms, biplanar octahedra, and biplanar cuboids.

psd rank is not constant over combinatorial type or oriented matroid.

- Can we come up with a geometric classification?
- All-positive square root has been sufficient, is this true in general?
For a polytope P with f facets, we know that $\text{rank}_+(S_P) \geq \log(f)$. Our current psd bound only grows with dimension.

Theorem (Gouveia, R., Thomas)
For a generic polytope $P \subset \mathbb{R}^n$ with v vertices, the psd rank is bounded below by $\left(\frac{v}{n}\right)^{1/4}$.

So a generic 129-gon has psd rank at least five. This is the simplest example of a polygon with psd rank five that is known!

Question: Can we show a 7 or 8-gon with psd rank five?
For a polytope P with f facets, we know that $\text{rank}_+(S_P) \geq \log(f)$. Our current psd bound only grows with dimension.

Theorem (Gouveia, R., Thomas)

For a generic polytope $P \subset \mathbb{R}^n$ with v vertices, the psd rank is bounded below by $(nv)^{\frac{1}{4}}$.

So a generic 129-gon has psd rank at least five. This is the simplest example of a polygon with psd rank five that is known!
psd lower bound for generic polytopes

For a polytope P with f facets, we know that $\text{rank}_+(S_P) \geq \log(f)$. Our current psd bound only grows with dimension.

Theorem (Gouveia, R., Thomas)

For a generic polytope $P \subset \mathbb{R}^n$ with v vertices, the psd rank is bounded below by $(nv)^{\frac{1}{4}}$.

So a generic 129-gon has psd rank at least five. This is the simplest example of a polygon with psd rank five that is known!

Question: Can we show a 7 or 8-gon with psd rank five?
upper bound in \mathbb{R}^2

No upper bound (other than the trivial v) on the psd rank of a general v-gon was known until recently.

Shitov showed that the nonnegative rank of a v-gon was bounded above by $6 \lceil \frac{v}{7} \rceil$.

Theorem (Gouveia, R., Thomas)

All pentagons and hexagons have psd rank four. Hence, any v-gon has psd rank at most $4 \lceil \frac{v}{6} \rceil$.
Example

The $n \times n$ matrix with entries $(i - j)^2$ has nonnegative rank $\Theta(\log(n))$ and psd rank two. (Beasley, Laffey, and Hrubeš) and psd rank two.

\[
\begin{pmatrix}
0 & 1 & 4 & 9 \\
1 & 0 & 1 & 4 \\
4 & 1 & 0 & 1 \\
9 & 4 & 1 & 0 \\
\end{pmatrix}
\]
The $n \times n$ matrix with entries $(i - j)^2$ has nonnegative rank $\Theta (\log(n))$ and psd rank two.

Question: Can we find a family of slack matrices with an exponential sized gap between rank_{psd} and rank_+? Such a family would give an example where the expressive power of semidefinite programming outperforms that of linear programming.
Thank you for your attention!

This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0718124.