Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels

Denis Sidorov

Energy Systems Institute, Russian Academy of Sciences
e-mail: contact.dns@gmail.com

INV Follow-up Meeting
Isaac Newton Institute for Mathematical Sciences
Cambridge, UK, February 10 – 14, 2014
1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Outline

1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Outline

1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Outline

1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Outline

1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Outline

1. Problem Statement
2. Regular Case
3. Asymptotic Approximation of the Solution
4. Singular Case
5. Generalizations
6. Numerical Solution
Problem Statement

VIEq with piecewise continuous kernel

\[\int_{0}^{t} K(t, s)x(s)ds = f(t), \quad 0 \leq s \leq t \leq T, \quad f(0) = 0, \]
\[K(t, s) = \begin{cases}
K_1(t, s), & t, s \in m_1 \\
\ldots \ldots \ldots \ldots \\
K_n(t, s), & t, s \in m_n
\end{cases} \]

\[m_i = \{ t, s \mid \alpha_{i-1}(t) < s < \alpha_i(t) \}, \]
\[\alpha_0(t) = 0, \quad \alpha_n(t) = t, \quad i = 1, n \]

\[\alpha_i(t), \ f(t) \in C^1_{[0, T]}, \ K_i(t, s) \] have continuous derivatives w.r.t. \(t \) for \(t, s \in m_i \),

\[K_n(t, t) \neq 0, \quad \alpha_{i}(0) = 0, \quad 0 < \alpha_1(t) < \alpha_2(t) < \cdots < \alpha_{n-1}(t) < t, \]

\(\alpha_{1}(t), \ldots, \alpha_{n-1}(t) \) increase at least in the small neighborhood \(0 \leq t \leq \tau \),

\[0 < \alpha'_{1}(0) \leq \cdots \leq \alpha'_{n-1}(0) < 1 \]
Problem Statement

Problem Statement

VIEq with piecewise continuous kernel

\[\int_{0}^{t} K(t, s) x(s) ds = f(t), \quad 0 \leq s \leq t \leq T, \quad f(0) = 0, \quad (1) \]

\[K(t, s) = \begin{cases}
K_1(t, s), & t, s \in m_1 \\
\ldots \ldots \ldots \\
K_n(t, s), & t, s \in m_n
\end{cases} \quad m_i = \{ t, s \mid \alpha_{i-1}(t) < s < \alpha_i(t) \}, \]

\[\alpha_i(t), \quad f(t) \in C_{[0, T]}^1, \quad K_i(t, s) \text{ have continuous derivatives w.r.t. } t \text{ for } t, s \in m_i, \]

\[K_n(t, t) \neq 0, \quad \alpha_i(0) = 0, \quad 0 < \alpha_1(t) < \alpha_2(t) < \ldots < \alpha_{n-1}(t) < t, \]

\[\alpha_1(t), \ldots, \alpha_{n-1}(t) \text{ increase at least in the small neighborhood } 0 \leq t \leq \tau, \]

\[0 < \alpha'_1(0) \leq \ldots \leq \alpha'_{n-1}(0) < 1 \]
Objectives & Methods

Objective
Our objective is to construct the solution $x(t) \in C_{(0, T]}$

Applications
Mathematical models of evolving dynamical systems: vintage capital models, optimal replacement of equipment under technological change, rational harvesting of biological populations.

Methods
We employ the theory of functional equations\(^a\), power-logarithmic asymptotic expansions, the method of steps from delay ODE theory and conventional successive approximations method. For numerical solution the quadrature methods are used.

\(^a\)Gelfond A.O. *The Calculus of Finite Differences*. 5th Edt, Moscow: URSS Publ., 2012
Previous Results

\[\int_0^T K(t, s)x(s) \, ds = f(t), \quad 0 \leq s \leq t \leq T \]

New Problem Statement

\[
\begin{align*}
\alpha_1(t) & \quad \int_0^{\alpha_1(t)} K_1(t, s)x(s) \, ds + \int_{\alpha_1(t)}^{\alpha_2(t)} K_2(t, s)x(s) \, ds + \cdots + \\
& \quad \int_{\alpha_{n-1}(t)}^t K_n(t, s)x(s) \, ds = f(t)
\end{align*}
\]

Example 1

\[
K(t, s) = \begin{cases}
1, & 0 \leq s < t/2 \\
-1, & t/2 \leq s \leq t
\end{cases}
\]

\[
\int_0^{t/2} x(s) ds - \int_{t/2}^{t} x(s) ds = t
\]

\[
x\left(\frac{t}{2}\right) - x(t) = 1, \quad x(t) = c - \frac{\ln t}{\ln 2}
\]
Existence and Uniqueness of the Local Solution

\[F(x) \overset{\text{def}}{=} K_n(t, t)x(t) + \sum_{i=1}^{n-1} \alpha'_i(t) \left\{ K_i(t, \alpha_i(t)) - K_{i+1}(t, \alpha_i(t)) \right\} x(\alpha_i(t)) + \]

\[+ \sum_{i=1}^{n} \frac{\alpha_i(t)}{\alpha_{i-1}(t)} \int_{\alpha_{i-1}(t)}^{\alpha_i(t)} \frac{\partial K_i(t, s)}{\partial t} x(s) ds - f'(t) = 0 \] (2)
Reduction to the VIE of the 2nd kind

\[x(t) + Ax + Qx = \hat{f}(t) \]

\(A \) is the functional perturbation operator:

\[Ax \overset{\text{def}}{=} K_n^{-1}(t, t) \sum_{i=1}^{n-1} \alpha'_i(t) \left\{ K_i(t, \alpha_i(t)) - K_{i+1}(t, \alpha_i(t)) \right\} x(\alpha_i(t)) \]

\(B \) is the Volterra operator:

\[Qx := \int_0^t Q(t, s)x(s)ds \overset{\text{def}}{=} \sum_{i=1}^n \alpha_i(t) \int_{\alpha_{i-1}(t)}^{\alpha_i(t)} K_n^{-1}(t, s) \frac{\partial K_i(t, s)}{\partial t} x(s)ds \]

\[\hat{f}(t) \overset{\text{def}}{=} K_n^{-1}(t, t)f'(t), \quad K_n(t, t) \neq 0 \]

Objective: To obtain the sufficient conditions for existence of local solution, i.e. \(\| A + Q \| \leq q, \quad q < 1, \quad t \in (0, \tau] \)
\[D(t) \overset{\text{def}}{=} \sum_{i=1}^{n-1} |\alpha_i'(t)K_n^{-1}(t, t)| \cdot |K_i(t, \alpha_i(t)) - K_{i+1}(t, \alpha_i(t))| \]

The idea is to use an equivalent norm \(\|x\|_l := \sup_{0<t<\tau} e^{-lt}|x(t)| \), so that the Volterra integral operator \(Q \) becomes contractive.

\[\|Qx\|_l \leq q(l)\|x\|_l, \quad \lim_{l \to \infty} q(l) = 0, \]

If \(D(0) < 1 \), then \(\forall q_1 < 1 \ \exists \tau > 0 \ D(t) \leq q_1, \ t \in [0, \tau] \).

Then \(\|Ax\|_l \leq q_1\|x\|_l \)

\[\Rightarrow \|Ax\|_l + \|Qx\|_l \leq (q_1 + q(l))\|x\|_l \leq q\|x\|_l, \ 0 < q < q_1 < 1 \quad \forall l \geq l(q), \ t \in [0, \tau] \]
Existence & Uniqueness of Local Solution

Theorem 1:

Sufficient Conditions of Existence & Uniqueness of Local Solution

Let for $t \in [0, T]$ the following conditions be fulfilled: continuous $K_i(t, s), i = 1, n$, $\alpha_i(t)$ and $f(t)$ have continuous derivatives wrt t, $K_n(t, t) \neq 0$, $0 = \alpha_0(t) < \alpha_1(t) < \cdots < \alpha_{n-1}(t) < \alpha_n(t) = t$ for $t \in (0, T]$, $\alpha_i(0) = 0$, $f(0) = 0$, $D(0) < 1$, then $\exists \tau > 0$ such as eq. (1) has a unique local solution in $C_{[0, \tau]}$.

back to example 1:

$$\int_0^{t/2} x(s) ds - \int_{t/2}^t x(s) ds = t, \quad D(t) \equiv 1 \Rightarrow \text{no unique solution!}$$
Theorem 2:
Sufficient Conditions of Existence & Uniqueness of the Global Solution*

Let the conditions of the Theorem 1 are fulfilled, and moreover let
\[
\min_{\tau \leq t \leq T} (t - \alpha_{n-1}(t)) = h > 0.
\]
Then eq. (1) has unique global solution in \(C_{[0,T]} \).

*D.N.Sidorov, E.V.Markova. One the Volterra integral model of evolving
\[
\min_{\tau \leq t \leq T} (t - \alpha_{n-1}(t)) = h > 0
\]
Lemma 1

Lemma

Let $\alpha : [0, T] \to \mathbb{R}^+$, $\alpha(t) \in C^1_{[0, T]}$, $\alpha(0) = 0$, $0 \leq \alpha^{(1)}(0) < 1$. Let $h \in (0, T)$, $l_0 := [0, h]$, \cdots, $l_k := [(1 + (k-1)\varepsilon)h, (1 + k\varepsilon)h]$, $\varepsilon > 0$, $[0, T] = \bigcup_{k=0}^{m} l_k$. If $0 < \alpha(t) < t$, $\alpha^{(1)}(t) \leq \frac{1}{1+\varepsilon}$ for $0 \leq t \leq T$ then

$$\alpha : l_j \to \bigcup_{k=0}^{j-1} l_k, j = 1, m.$$ \hspace{1cm} (4)
Proof of the Lemma 1

Idea: proof by induction and mean value theorem.

Since \(\alpha : l_j \to \bigcup_{k=0}^{j-1} l_k \iff \alpha(t) \leq (1 + (j - 1)\varepsilon)h \ \forall t \in l_j \), then it's enough to proof by induction that

\[
\alpha(t) \mid_{t \in l_j} \leq (1 + (j - 1)\varepsilon)h, \ j = 1, m. \tag{5}
\]

\(j = 1 \): Let \(a \in l_1, \ b = l_1 \cap l_0 = h \), then \(a - b \leq \varepsilon h \). \(\exists \xi \in [0, h], \exists \xi_1 \in [h, a] : \alpha(a) = \alpha(b) + \alpha'(\xi)(a - b) = \alpha(0) + \alpha'(\xi_1)h + \alpha'(\xi)(a - b) \leq \frac{1}{1+\varepsilon}h + \frac{1}{1+\varepsilon}\varepsilon h = h. \)
Proof of the Lemma 1

Let (5) be fulfilled for $j = 2, \ldots, m - 1$.

Then $\forall a \in I_m$ and $b = I_m \cap I_{m-1} = (1 + (m - 1)\varepsilon)h$:

$$
\alpha(a) = \alpha(b) + \alpha'(\xi)(a - b) \leq (1 + (m - 2)\varepsilon)h + \frac{1}{1 + \varepsilon} \varepsilon h
$$

$$
1 + (m - 2)\varepsilon + \frac{\varepsilon}{1 + \varepsilon} < 1 + (m - 1)\varepsilon
$$

Therefore $\forall a \in I_m : \alpha(a) \leq (1 + (m - 1)\varepsilon)h$. ■
Proof of the Th. 2

The local solution exists on $[0, \tau]$ due to conditions of the Theorem 1. Let $\Delta > 0$, $l_0 = [0, \tau], \ldots, l_k = [\tau + (k - 1)\Delta, \tau + k\Delta], k = 1, N,$ $[0, T] \subset \bigcup_{k=0}^{N} I_k$. $\alpha_i(t) : [0, \tau] \rightarrow [0, \tau_i'], \tau_i' < \tau, i = 1, n - 1$. For $t \in [\tau, T]$ due to the Lemma’s conditions we have $\alpha_i(t) \leq t - h$. It allows us to select $\Delta \leq h$, such as

$$\alpha_i(t) : l_k \rightarrow \bigcup_{j=0}^{k-1} l_j.$$ \hfill (6)
Proof of the Th. 2

Inclusion (6) allows us to extend the local solution $x_0(t)$ onto the whole $[\tau, T]$ with step Δ using the method of steps. Indeed, let us construct the desired continuation of the solution on section I_1. For that objective we solve the VIE of the 2nd kind

$$x(t) + \int_{\tau}^{t} Q(t, s)x(s)ds = -Ax_0 - \int_{0}^{\tau} Q(t, s)x_0(s)ds + \hat{f}(t), \quad (7)$$

$$t \in [\tau, \tau + \Delta] = I_1,$$

where in the right hand side we already have the known $x_0(t)$.

Denis N. Sidorov contact.dns@gmail.com

Integral Equations with Jump Discontinuous Kernels 16 / 36
Proof of the Th. 2

Continuous function $x_1(t)$, which satisfy eq. (7) for $t \in I_1$ is continuous extension of the solution $x_0(t)$ onto $[\tau, \tau + \Delta]$. Let us fix $q \in (0, 1)$, let

$$\sup_{s,t} |Q(t, s)| = c < \infty \text{ and } \Delta \leq \min\left(h, \frac{q}{c}\right).$$

Then operator $\int_{\tau}^{t} Q(t, s)x(s)ds$ in $C[\tau, \tau + \Delta]$ will be contracting, and q is contraction coefficient. Hence eq. (7) has the unique solution $x_1(t) \in C[\tau, \tau + \Delta]$.

Therefore the function

$$\hat{x}_1 = \begin{cases} x_0(t), & 0 < t \leq \tau, \\ x_1(t), & \tau \leq t < \tau + \Delta, \\
\end{cases}$$

is constructed and it continuously extends the solution on $[\tau, \tau + \Delta]$.
Proof of the Th. 2

The next continuation \(x_2(t) \in C_{[\tau+\Delta, \tau+2\Delta]} \). Now we have to solve the VIEq with known \(\hat{x}_1 \):

\[
x(t) + \int_{\tau+\Delta}^{t} Q(t,s)x(s)ds = -A\hat{x}_1 - \int_{0}^{\tau+\Delta} Q(t,s)\hat{x}_1(s)ds, \quad t \in [\tau+\Delta, \tau+2\Delta].
\]

Finally, we will construct the function

\[
\hat{x}_2(t) = \begin{cases}
 x_0(t), & 0 < t \leq \tau, \\
 x_1(t), & \tau \leq t \leq \tau + \Delta, \\
 x_2(t), & \tau + \Delta \leq t \leq \tau + 2\Delta.
\end{cases}
\]

We can continue this process and within finite number of steps on \((0, T]\) the desired \(x(t) \in C_{(0, T]} \), will be constructed.
Supplementary Condition of Local Smoothness

So, in case of $D(0) < 1$ the global solution exists and unique: local solution is constructed by successive approximations and continued by method of steps with successive approximations on each step. Therefore theoretical instest is to study the case $D(0) \geq 1$

A. Exists polynomial $P_i(t, s) = \sum_{\nu+\mu=0}^{M} K_{i\nu\mu} t^\nu s^\mu, i = 1, n$, ,

$f^M(t) = \sum_{\nu=1}^{M} f_\nu t^\nu, \alpha_i^M(t) = \sum_{\nu=1}^{M} \alpha_i^\nu t^\nu, i = 1, n - 1$, where

$0 < \alpha_{11} < \alpha_{12} < \cdots < \alpha_{n-1,n} < 1$ such as for $t \to +0, s \to +0$ the following estimates hold:

$|K_i(t, s) - P_i(t, s)| = O((t+s)^{M+1}), i = 1, n,$

$f(t) - f^M(t) = O(t^{M+1})$,

$|\alpha_i(t) - \alpha_i^M(t)| = O(t^{M+1}), i = 1, n - 1.$
Supplementary Condition of Local Smoothness

Let \(0 \leq \alpha'_i(0) < 1, \alpha_i(0) = 0, i = 1, n - 1 \). Then \(\forall \varepsilon \in (0, 1) \)
\[
\exists \tau \in (0, T] : \max_{i=1, n-1, t \in [0, \tau]} |\alpha'_i(t)| \leq \varepsilon, \quad \sup_{t \in (0, \tau]} \frac{\alpha_{n-1}(t)}{t} \leq \varepsilon.
\]

B. For fixed \(q \in (0, 1) \), \(\tau \in (0, T] \), \(0 < \varepsilon < 1 \)
\[
\max_{t \in [0, \tau]} \varepsilon^M D(t) \leq q < 1
\]

Estimate is true for big enough \(M \)
Let condition $D(0) < 1$ is not fulfilled.

$$C. \text{ Select } N^* \text{ such as } \lim_{t \to 0} \frac{\left(\int_0^t K(t,s)\hat{x}(s) \, ds - f(t) \right)'}{t^{N^*}} = 0$$

Theorem 3

Let $\hat{x}(t)$ be the known function such as the discrepancy C is true for $N^* \geq M$. Then eq. (1) has the solution $x(t) = \hat{x}(t) + t^{N^*} u(t)$, where $u(t) \in C[0,T]$ is unique and can be constructed by means of the successive approximations method.

Regularization

For $u(t)$ we have the equation

$$\int_0^t K(t, s)s^N u(s) \, ds = g(t) \quad (\ast)$$

$$g(t) := -\int_0^t K(t, s)\hat{x}(s) \, ds + f(t),$$

$$g(t) \in C_{[0, T]}^{(1)}, g(0) = 0, |g'(t)| = o(t^N), \text{ as } t \to +0$$

Definition

The equation (\ast) has unique solution and we call it as *regularization* of the equation (1). Function $\hat{x}(t)$ is approximation of solution to eq. (1).
Question Remains:
How to Construct an Approximation $\hat{x}(t)$ to meet the Condition \mathbf{C}?

Idea:
To construct $\hat{x}(t)$ as power-logarithmic asymptotic expansion. We would need an additional smoothness of all the given functions according to the condition \mathbf{A} since we need the Taylor coefficients.

No need in condition $D(0) < 1$
Relaxation of the condition $D(0) < 1$

Theorem 4 (Relaxed Sufficient Condition for Existence & Uniqueness)

Let conditions (B) and (C) be fulfilled, and

$$B(j) := K_n(0, 0) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j} (K_i(0, 0) - K_{i+1}(0, 0)) \neq 0$$

for $j \in \mathbb{N} \cup \{0\}$. Then eq. (1) has unique solution $x(t) = x^M(t) + t^{N^*} u(t)$ in $C_{[0, T]}$, $M \geq N$. Moreover, for $t \to +0$ polynomial

$$\hat{x}(t) \equiv x^M(t) = \sum_{i=0}^{M} x_i t^i$$

is an Mth order asymptotic approximation of such solution.
Since $B(j) \neq 0$, $j \in \mathbb{N} \cup \{0\}$ then all the coefficients in the solution $x_M(t) = \sum_{i=0}^{M} x_i t^i$ can be determined. We can construct the solution in the form $x(t) = x_M(t) + t^{N^*} u(t)$, $M \geq N^*$. We get the integral-functional equation satisfying the contraction mapping principle on $(0, \tau]$ and the function $u(t) \in C_{(0, T]}$ can be uniquely determined with successive approximations. ■
We search for the approximation of solution as \(\hat{x}(t) = \sum_{j=0}^{N} x_j t^j \).

To find \(x_j \) using method of undetermined coefficients we must solve the recurrent sequence of linear algebraic equations

\[
B(j)x_j = M_j(x_0, \cdots, x_{j-1}), \quad M_0 = f'(0)
\]

Characteristic Equation

\[
B(j) \equiv K_n(0,0) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j} (K_i(0,0) - K_{i+1}(0,0)) = 0
\]

\(B(j) \neq 0 \) for \(j \in \mathbb{N} \cup \{0\} \)

If \(B(j^*) = 0 \) then coefficient \(x_{j^*} \) of power-logarithmic expansion is solution to the difference eq.:

\[
K_n(0,0)x_{j^*}(z) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j^*} \{ K_i(0,0) - K_{i+1}(0,0) \} \cdot x_{j^*}(z + \ln \alpha'_i(0)) = M_j(x_0(z), \cdots, x_{j^*-1}(z)), \quad z := \ln t
\]
Construction of the Power-Logarithmic Asymptotic of Solution

We search for the approximation of solution as \(\hat{x}(t) = \sum_{j=0}^{N} x_j t^j \).

To find \(x_j \) using method of undetermined coefficients we must solve the recurrant sequence of linear algebraic equations

\[
B(j)x_j = M_j(x_0, \cdots, x_{j-1}), \quad M_0 = f'(0)
\]

Characteristic Equation

\[
B(j) \equiv K_n(0, 0) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j}(K_i(0, 0) - K_{i+1}(0, 0)) = 0
\]

\(B(j) \neq 0 \) for \(j \in \mathbb{N} \cup \{0\} \)

If \(B(j^*) = 0 \) then coefficient \(x_{j^*} \) of power-logarithmic expansion is solution to the difference eq.: \(K_n(0, 0)x_{j^*}(z) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j^*}(K_i(0, 0) - K_{i+1}(0, 0)) \cdot x_{j^*}(z + \ln \alpha'_i(0)) = M_j(x_0(z), \cdots, x_{j^*-1}(z)), \quad z := \ln t \)
We search for the approximation of solution as \(\hat{x}(t) = \sum_{j=0}^{N} x_j t^j \).

To find \(x_j \) using method of undetermined coefficients we must solve the reccurent sequence of linear algebraic equations

\[
B(j)x_j = M_j(x_0, \cdots, x_{j-1}), \quad M_0 = f'(0)
\]

Characteristic Equation

\[
B(j) \equiv K_n(0, 0) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j}(K_i(0, 0) - K_{i+1}(0, 0)) = 0
\]

\(B(j) \neq 0 \) for \(j \in \mathbb{N} \cup \{0\} \)

If \(B(j^*) = 0 \) then coefficient \(x_{j^*} \) of power-logarithmic expansion is solution to the difference eq.: \(K_n(0, 0)x_{j^*}(z) + \sum_{i=1}^{n-1} (\alpha'_i(0))^{1+j^*}(K_i(0, 0) - K_{i+1}(0, 0)) \cdot x_{j^*}(z + \ln \alpha'_i(0)) = M_j(x_0(z), \cdots, x_{j^*-1}(z)), \quad z := \ln t \)
Example 1

Back to example 1: \(\int_0^{t/2} x(s)ds - \int_{t/2}^{t} x(s)ds = t \)

Characteristic eq. \(B(j) \equiv -1 + (1/2)^j = 0 \), root: \(j^* = 0 \) \(\Rightarrow \)

\[x\left(\frac{t}{2}\right) - x(t) = 1, \]

\[x(t) = C_1 + C_2 \ln t \]

\[C_1 + C_2 \left(\ln \frac{t}{2} \right) - C_1 - C_2 \ln t = 1 \Rightarrow C_2 = -\frac{1}{\ln 2} \]

Solution:

\[x(t) = -\frac{\ln t}{\ln 2} + \text{const}. \]
Example 1

Back to example 1: \(\int_{0}^{t/2} x(s) \, ds - \int_{t/2}^{t} x(s) \, ds = t \)

Characteristic eq. \(B(j) \equiv -1 + (1/2)^j = 0 \), root: \(j^* = 0 \) \(\Rightarrow \)

\[
x \left(\frac{t}{2} \right) - x(t) = 1,
\]

\[
x(t) = C_1 + C_2 \ln t
\]

\[
C_1 + C_2 \left(\ln \frac{t}{2} \right) - C_1 - C_2 \ln t = 1 \Rightarrow C_2 = -\frac{1}{\ln 2}
\]

Solution:

\[
x(t) = -\frac{\ln t}{\ln 2} + \text{const.}
\]
Example 1

Back to example 1: $\int_{0}^{t/2} x(s) ds - \int_{t/2}^{t} x(s) ds = t$

Characteristic eq. $B(j) \equiv -1 + (1/2)^j = 0$, root: $j^* = 0 \Rightarrow$

$$x\left(\frac{t}{2}\right) - x(t) = 1,$$

$$x(t) = C_1 + C_2 \ln t$$

$$C_1 + C_2 \left(\ln \frac{t}{2}\right) - C_1 - C_2 \ln t = 1 \Rightarrow C_2 = -\frac{1}{\ln 2}$$

Solution:

$$x(t) = -\frac{\ln t}{\ln 2} + \text{const}.$$
Example 1

Back to example 1: \(\int_0^{t/2} x(s)ds - \int_{t/2}^{t} x(s)ds = t \)

Characteristic eq. \(B(j) \equiv -1 + (1/2)^j = 0 \), \(\text{root: } j^* = 0 \Rightarrow \)

\[
x \left(\frac{t}{2}\right) - x(t) = 1, \\
x(t) = C_1 + C_2 \ln t \\
C_1 + C_2 \left(\ln \frac{t}{2}\right) - C_1 - C_2 \ln t = 1 \Rightarrow C_2 = -\frac{1}{\ln 2} \\
\]

Solution:

\[
x(t) = -\frac{\ln t}{\ln 2} + \text{const}. \\
\]
1. Generalization to the Nonlinear VIE

\[
\int_{0}^{t} K(t, s, x(s)) \, ds, \quad 0 \leq s \leq t \leq T, \quad f(0) = 0
\]

\(K(t, s, x(s)) = \begin{cases}
K_1(t, s)G_1(s, x(s)), & t, s \in m_1, \\
\quad \ldots \quad \ldots \ldots \\
K_1(t, s)G_1(s, x(s)), & t, s \in m_n,
\end{cases}\)

\(m_i = \{t, s| \alpha_{i-1}(t) < s < \alpha_i(t)\}, \ \alpha_0(t) = 0, \ \alpha_n(t) = t, \ i = 1, n, \ K_i(t, s), \ f(t), \ \alpha_i(t) \) have continuous derivatives w.r.t. \(t\) for \(t, s \in m_i, \ K_n(t, t) \neq 0, \ \alpha_i(0) = 0, \ 0 < \alpha_1(t) < \alpha_2(t) < \cdots < \alpha_{n-1}(t) < t, \ \alpha_1(t), \ldots, \alpha_{n-1}(t) \) increase at least in the small neighborhood \(0 \leq t \leq \tau.\)
Problem Statement

Asymptotic Approximation of the Solution

Singular Case

Generalizations

Numerical Solution

(D) Lipschitz cond.: \(|G_i(s, x_1) - G_i(s, x_2) - (x_1 - x_2)| \leq q_i|x_1 - x_2|, \forall x_1, x_2 \in \mathbb{R}^1\)

(E) \(q_n + \sum_{i=1}^{n-1} \alpha_i'(0)|K_n^{-1}(0, 0)(K_i(0, 0) - K_{i+1}(0, 0))|(1 + q_i) < 1\)

Theorem 2' (Sufficient Condition for Existence & Uniqueness for NLVIEq)

Let for \(t \in [0, T]\) the following conditions be fulfilled:

\(K_i(t, s), G_i(s, x(s)), i = 1, n\) are continuous, \(\alpha_i(t)\) and \(f(t)\) have continuous derivatives wrt \(t\), \(K_n(t, t) \neq 0, 0 = \alpha_0(t) < \alpha_1(t) < \cdots < \alpha_{n-1}(t) < \alpha_n(t) = t\), for \(t \in (0, T]\), \(\alpha_i(0) = 0, f(0) = 0, (D)\) and (E).

Then \(\exists \tau > 0\) such as eq. (8) posseses unique local solution. Moreover if \(\min_{\tau \leq t \leq T} (t - \alpha_{n-1}(t)) = h > 0\) then such local solution is continuously extendable on the entire \([\tau, T]\) using the method of steps and successive approximations. Therefore exists unique global solution in \(C_{[0, T]}\).
2. Generalizations:

Systems of linear VIEs with piecewise continuous kernels:

Abstract integral-operator Volterra equations in Banach spaces:

\[K_i(t, s) \in \mathcal{L}(E_1 \to E_2), \quad G_i : E_1 \to E_1 \]

Numerical Solution

\[\int_0^{\alpha(t)} K_1(t, s)x(s)ds + \int_{\alpha(t)}^{t} K_2(t, s)x(s)ds = f(t), \quad t \in [0, T], \quad (9) \]

\[0 < \alpha(t) < t \quad \forall t \in (0, T], \quad \alpha(0) = 0, \quad K_1(t, s), K_2(t, s), f(t) \text{ are continuous and smooth sufficiently, } f(0) = 0, \quad K_2(t, t) \neq 0 \quad \forall t \in [0, T]. \]

\[t_i = t_0 + ih, \quad i = 1, n, \quad t_0 = 0, \quad nh = T, \quad l = \left[\frac{\alpha(t_i)}{h} \right] + 1 \]

\[h \sum_{j=1}^{l-1} K_1(t_i, t_j)x^h(t_j) + (\alpha(t_i) - t_{l-1})K_1(t_i, \alpha(t_i))x^h(\alpha(t_i)) + \]

\[+ (t_l - \alpha(t_i))K_2(t_i, t_l)x^h(t_l) + h \sum_{j=l+1}^{i} K_2(t_i, t_j)x^h(t_j) = f(t_i) \quad i = 1, n \]

Denis N. Sidorov contact.dns@gmail.com
\[x^h(\alpha(t_1)) = \frac{f(t_1)}{(\alpha(t_1) - t_0)K_1(t_1, \alpha(t_1)) + (t_1 - \alpha(t_1))K_2(t_1, \alpha(t_1))} \] (11)

\[x(0) = \frac{f'(0)}{\alpha'(0)[K_1(0, 0) - K_2(0, 0)] + K_2(0, 0)} \] (12)

If \(D(0) < 1 \) (Theorem 2) then
\[
\alpha'(0)[K_1(0, 0) - K_2(0, 0)] + K_2(0, 0) \neq 0
\]
1st Example

\[
\int_{0}^{\frac{t}{3}} (1 + t - s)x(s)\,ds - \int_{\frac{t}{3}}^{t} x(s)\,ds = \frac{t^4}{108} - \frac{25t^3}{81}, \quad t \in [0, 2],
\]

\[
\bar{x}(t) = t^2
\]

\[
\varepsilon_1 = \max_{1 \leq i \leq n} |\bar{x}(t_i) - x_1^h(t_i)|, \quad \varepsilon_2 = \max_{0 \leq i \leq n} |\bar{x}(t_i) - x_2^h(t_i)|,
\]

\(x_1^h\) is solution computed with (11) in \(a(t_1)\)

\(x_2^h\) is solution computed with (12), (11) and extrapolation in the 1st node.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\varepsilon_1)</th>
<th>(\varepsilon_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td>0.068433</td>
<td>0.066695</td>
</tr>
<tr>
<td>1/64</td>
<td>0.034362</td>
<td>0.034189</td>
</tr>
<tr>
<td>1/128</td>
<td>0.017433</td>
<td>0.017371</td>
</tr>
</tbody>
</table>
2nd Example

\[
2 \int_0^{\sin(\frac{t}{2})} x(s) \, ds - \int_{\sin(\frac{t}{2})}^t x(s) \, ds = \frac{1}{3} \sin^3 \frac{t}{2} + \frac{t^3}{3}, \quad t \in [0, 2\pi], \\
\bar{x}(t) = t^2
\]

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\varepsilon_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/128)</td>
<td>0,1540369</td>
</tr>
<tr>
<td>(\pi/256)</td>
<td>0,0770624</td>
</tr>
<tr>
<td>(\pi/512)</td>
<td>0,0385212</td>
</tr>
</tbody>
</table>
THANK YOU

FOR YOUR ATTENTION
Special Session: “Optimization in Inverse Problems”