
The BKZ algorithm

Joop van de Pol

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB
United Kingdom.

May 9th, 2014

Joop van de Pol
The BKZ algorithm Slide 1



Outline

Lattices

Basis Reduction
LLL
BKZ
Enumeration
BKZ 2.0

Open questions

Joop van de Pol
The BKZ algorithm Slide 2



Lattices

O

b2

b1

Lattices are represented by a basis.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices

O

Lattices are represented by a basis. This basis is not unique.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices

O

Lattices are represented by a basis. This basis is not unique.
Many bases span the same lattice. Some are ‘better’ than others.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices

O

Lattice problems are about finding short and close vectors.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices

O

Lattice problems are about finding short and close vectors.

Joop van de Pol
The BKZ algorithm Slide 3



Lattices

O

Lattice problems are about finding short and close vectors.
In practice it suffices to find short and orthogonal basis vectors.

Joop van de Pol
The BKZ algorithm Slide 3



Gram-Schmidt
Iterative process to orthonormalize a set of vectors b1, . . . ,bd :

b∗1 := b1

b∗i := bi −
i−1∑
j=1

µijb∗j , where µij =
〈bi ,b∗j 〉
‖b∗j ‖2

for all 1 ≤ j < i ≤ d .

Result: vectors b∗1, . . . ,b
∗
d that are pairwise orthogonal.

They span the same space as b1, . . . ,bd .

In lattices: only integral combinations are allowed, b∗1, . . . ,b
∗
d will not

span the same lattice!

Joop van de Pol
The BKZ algorithm Slide 4



Gram-Schmidt
Iterative process to orthonormalize a set of vectors b1, . . . ,bd :

b∗1 := b1

b∗i := bi −
i−1∑
j=1

µijb∗j , where µij =
〈bi ,b∗j 〉
‖b∗j ‖2

for all 1 ≤ j < i ≤ d .

Result: vectors b∗1, . . . ,b
∗
d that are pairwise orthogonal.

They span the same space as b1, . . . ,bd .

In lattices: only integral combinations are allowed, b∗1, . . . ,b
∗
d will not

span the same lattice!

Joop van de Pol
The BKZ algorithm Slide 4



Gram-Schmidt

O

b1
b2

Joop van de Pol
The BKZ algorithm Slide 5



Gram-Schmidt

O
b2

b1 = b∗1

Forget that we are in a lattice.

Joop van de Pol
The BKZ algorithm Slide 5



Gram-Schmidt

O

b1 = b∗1
b2

b∗2

Projecting b2 gives b∗2.

Joop van de Pol
The BKZ algorithm Slide 5



Gram-Schmidt

O
b2

b∗2

b1 = b∗1

b∗2 is not a lattice vector.

Joop van de Pol
The BKZ algorithm Slide 5



Gram-Schmidt

O
b2

b∗2

b1 = b∗1

But there is a lattice vector within 1
2‖b∗1‖ from b∗2:

b′2 := b2 − dµ2,1c · b1.

Joop van de Pol
The BKZ algorithm Slide 5



Gram-Schmidt

O
b2

b∗2

b1 = b∗1

b′2

It is always possible to choose a basis close to the Gram Schmidt
vectors. This basis is called size-reduced.

Joop van de Pol
The BKZ algorithm Slide 5



LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.

I Improve Gram-Schmidt vectors by changing their order.
I Being greedy when ordering basis vectors is bad for the

complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .
Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).

Joop van de Pol
The BKZ algorithm Slide 6



LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.
I Improve Gram-Schmidt vectors by changing their order.

I Being greedy when ordering basis vectors is bad for the
complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .
Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).

Joop van de Pol
The BKZ algorithm Slide 6



LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.
I Improve Gram-Schmidt vectors by changing their order.
I Being greedy when ordering basis vectors is bad for the

complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .
Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).

Joop van de Pol
The BKZ algorithm Slide 6



LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.
I Improve Gram-Schmidt vectors by changing their order.
I Being greedy when ordering basis vectors is bad for the

complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .

Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).

Joop van de Pol
The BKZ algorithm Slide 6



LLL (1982)
First polynomial-time basis reduction algorithm.
Ideas:

I Always take the basis ‘closest’ to Gram-Schmidt.
I Improve Gram-Schmidt vectors by changing their order.
I Being greedy when ordering basis vectors is bad for the

complexity.

b1, . . . ,bi ,bi+1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
d

What happens when bi and bi+1 are swapped?
Only b∗i and b∗i+1 change. New b∗i becomes b∗i+1 + µi+1,ib∗i .
Swap when ‖b∗i+1 + µi+1,ib∗i ‖2 < δ‖b∗i ‖2, for δ ∈ (1/4,1).

Joop van de Pol
The BKZ algorithm Slide 6



BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.
If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.

Joop van de Pol
The BKZ algorithm Slide 7



BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.

If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.

Joop van de Pol
The BKZ algorithm Slide 7



BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.
If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.

Joop van de Pol
The BKZ algorithm Slide 7



BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.
If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.

Joop van de Pol
The BKZ algorithm Slide 7



BKZ (1987, 1994)
Trade-off between basis quality and time.

b1, . . . ,bi ,bi+1, . . . ,bi+β−1, . . . ,bd
b∗1, . . . ,b

∗
i ,b
∗
i+1, . . . ,b

∗
i+β−1, . . . ,b

∗
d

Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.
If ‖bnew‖2 < δ‖b∗i ‖2, insert bnew into the basis:

b1, . . . ,bi−1,bnew,bi , . . . ,bd

Now LLL is used to remove the linear dependency created by the
extra vector. BKZ moves cyclically through the basis indices i .

Note: we do not have a good bound on the time complexity of BKZ.

Joop van de Pol
The BKZ algorithm Slide 7



BKZ (1987, 1994)
“Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.”

This is equivalent to solving SVP (!) in a (projected) lattice of
dimension β. BKZ uses an SVP-oracle for lower dimensions to find
this vector bnew.

In practice enumeration is used: enumerate all lattice points within a
certain radius around the origin.

Joop van de Pol
The BKZ algorithm Slide 8



BKZ (1987, 1994)
“Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.”

This is equivalent to solving SVP (!) in a (projected) lattice of
dimension β. BKZ uses an SVP-oracle for lower dimensions to find
this vector bnew.

In practice enumeration is used: enumerate all lattice points within a
certain radius around the origin.

Joop van de Pol
The BKZ algorithm Slide 8



BKZ (1987, 1994)
“Compute bnew, a combination of vectors bi ,bi+1, . . . ,bi+β−1 such
that it becomes the shortest possible i ’th Gram-Schmidt vector.”

This is equivalent to solving SVP (!) in a (projected) lattice of
dimension β. BKZ uses an SVP-oracle for lower dimensions to find
this vector bnew.

In practice enumeration is used: enumerate all lattice points within a
certain radius around the origin.

Joop van de Pol
The BKZ algorithm Slide 8



Enumeration

O

b1
b2

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1
b2

1) Choose a bound.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

2) Do the Gram-Schmidt.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

3) ‘Project’ whole lattice.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

Lattice vector within bound⇒ its projection within bound.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

4) Enumerate all vectors in projected lattice within bound.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

5) For each vector in projected lattice, enumerate all lattice vectors.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

5) For each vector in projected lattice, enumerate all lattice vectors.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration

O

b1 = b∗1
b2

b∗2

6) Pick the shortest vector.

Joop van de Pol
The BKZ algorithm Slide 9



Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search.

Joop van de Pol
The BKZ algorithm Slide 10



Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search. Each level corresponds to a
projected lattice.

Joop van de Pol
The BKZ algorithm Slide 10



Enumeration as a tree

O

b1 = b∗
1

b∗
2

Enumeration is like a tree search. Each level corresponds to a
projected lattice. The leaves correspond to lattice vectors.

Joop van de Pol
The BKZ algorithm Slide 10



Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves.

Joop van de Pol
The BKZ algorithm Slide 11



Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves. Pruning decreases the
size of the tree.

Joop van de Pol
The BKZ algorithm Slide 11



Extreme pruning

O

b1 = b∗
1

b∗
2

Branches near the edge yield fewer leaves. Pruning decreases the
size of the tree. It might also remove the solutions.

Joop van de Pol
The BKZ algorithm Slide 11



Extreme pruning

O

b1 = b∗
1

b∗
2

Extreme pruning: probability p of finding the solution, but more than
p−1 times faster.

Joop van de Pol
The BKZ algorithm Slide 11



Extreme pruning

O

b1 = b∗
1

b∗
2

Extreme pruning: probability p of finding the solution, but more than
p−1 times faster. This gives a speed-up of ≈ 2d/2.

Joop van de Pol
The BKZ algorithm Slide 11



BKZ 2.0
Extreme pruning requires a good bound on the length of the
shortest vector. For small β the Gaussian Heuristic does not hold.

For β > 40, the projected lattices behave like random lattices. The
Gaussian Heuristic gives us a good bound.

Chen and Nguyen proposed BKZ 2.0 with the following
improvements over the original:

I Better enumeration bound
I Extreme pruning
I Aborting BKZ after a fixed number of rounds
I Better preprocessing of the blocks

Joop van de Pol
The BKZ algorithm Slide 12



BKZ 2.0
Extreme pruning requires a good bound on the length of the
shortest vector. For small β the Gaussian Heuristic does not hold.

For β > 40, the projected lattices behave like random lattices. The
Gaussian Heuristic gives us a good bound.

Chen and Nguyen proposed BKZ 2.0 with the following
improvements over the original:

I Better enumeration bound
I Extreme pruning
I Aborting BKZ after a fixed number of rounds
I Better preprocessing of the blocks

Joop van de Pol
The BKZ algorithm Slide 12



BKZ 2.0
Extreme pruning requires a good bound on the length of the
shortest vector. For small β the Gaussian Heuristic does not hold.

For β > 40, the projected lattices behave like random lattices. The
Gaussian Heuristic gives us a good bound.

Chen and Nguyen proposed BKZ 2.0 with the following
improvements over the original:

I Better enumeration bound
I Extreme pruning
I Aborting BKZ after a fixed number of rounds
I Better preprocessing of the blocks

Joop van de Pol
The BKZ algorithm Slide 12



Open questions
Regarding BKZ (2.0):

I Many heuristics. What can we prove?
I Destroys local structure for global improvement. Can this be

done better?
I What about structured (ideal) lattices?
I Can we speed it up using a quantum computer?

In general:
I Are there better classical algorithms?
I What about quantum algorithms?

Joop van de Pol
The BKZ algorithm Slide 13



Questions?

Joop van de Pol
The BKZ algorithm Slide 14


	Lattices
	Basis Reduction
	LLL
	BKZ
	Enumeration
	BKZ 2.0

	Open questions

