Boundary value problems with measure data for nonlinear elliptic equations with absorption.

Moshe Marcus

Department of Mathematics, Technion
32000 Haifa, ISRAEL
E-mail: marcusm@math.technion.ac.il

Newton Institute, Cambridge, 11 June 2014
Description of the problem.

\[-Lu + g(x, u) = 0, \quad \text{in } \Omega\]
\[u = \mu, \quad \text{on } \partial \Omega,\]
\[\Omega \text{ a domain in } \mathbb{R}^N, \quad \mu \text{ a Borel measure on } \partial \Omega,\]
\[(i) \ L = \Delta, \quad (ii) \ L = \Delta + \frac{a}{\rho^2}, \quad \rho(x) = \text{dist} (x, \partial \Omega), \quad a < \frac{1}{4},\]
\[g \in C(\mathbb{R}^N \times \mathbb{R}), \quad g \uparrow, \quad g \text{ odd, convex on } [0, \infty) \quad \lim_{t \to \infty} g(x, t)/t = \infty.\]

Notation \((g \circ u)(x) = g(x, u(x)).\)
For $\mu \in \mathcal{M}(\partial D)$ (space of finite Borel measures) u is a solution of the boundary value problem (1-2) with $L = \Delta$ if

(a) $u \in L^1_{loc}(\Omega), \ g \circ u \in L^1_{loc}(\Omega)$
(b) u satisfies the equation in distribution sense,
(c) u has m-boundary trace μ.
Definition of m-boundary trace:

If Ω is a bounded C^2 domain: let $\{D_n\}$ be an increasing sequence of uniform C^2 subdomains of D such that $D_n \uparrow \Omega$.
Assume: $u \in L^1(\partial D_n)$ $\forall n$.
Then
\[\int_{\partial D_n} hu \, dS \rightarrow \int_{\partial \Omega} h \, d\mu \quad \forall h \in C(\bar{\Omega}). \]

If Ω is a bounded Lipschitz domain: let $\{D_n\}$ be an increasing sequence of Lipschitz subdomains of D such that $D_n \uparrow \Omega$.
Then,
\[\int_{\partial D_n} hu \, d\omega_n \rightarrow \int_{\partial \Omega} h \, d\mu \quad \forall h \in C(\bar{\Omega}). \]
The absorption effect.

If \(g(x, t) \to \infty \) sufficiently fast as \(t \to \infty \) then the absorption effect balances the diffusion effect in such a way that

The set of solutions of equation (1) is uniformly bounded in every compact subset of \(D \).

A sharp criterion was supplied by Keller and Osserman (separately, 1957). It holds in arbitrary domains \(\Omega \).

Put \(G(x, s) = \int_0^s g(x, t) dt \). If

\[
\psi(x, a) := \int_a^\infty \frac{ds}{\sqrt{2G(x, s)}} < \infty \quad \forall a > 0,
\]

uniformly in compact subsets of \(\Omega \), then the above statement is valid.
If Ω is Lipschitz and

$$\sup_{x \in \Omega} \psi(x, a) < \infty, \quad a > 0,$$

there exists $c(g, \Omega)$ s.t., for every positive solution u

$$u(x) \leq c\phi(x, \rho(x)), \quad \phi(x, \cdot) = \psi^{-1}(x, \cdot).$$

$$\lim_{x \to \partial \Omega} u = \infty \implies \frac{1}{c} \phi(x, \rho(x)) \leq u(x) \leq c\phi(x, \rho(x)).$$

(M & Bandle 92 for C^2 domains; M 2014 for Lipschitz domains.)

Examples:

$$g(t) = |t|^{q-1}t, \quad q > 1 \implies \phi(s) = s^{-\frac{2}{q-1}}$$

$$g(t) = \max(e^t - 1, 0), \implies \phi(s) \sim |\ln s|.$$
Elementary facts about the boundary value problem.

\[-\Delta u + g \circ u = 0 \text{ in } \Omega, \quad u = \nu \text{ on } \partial \Omega, \quad (\nu \in \mathcal{M}(\partial \Omega)).\]

(a) **Uniqueness**: there exists at most one solution.

(b) **Monotonicity**: \(\nu_1 < \nu_2 \rightarrow u_1 \leq u_2\).

(c) **A-priori estimate**: \(\|u\|_{L^1} + \|g \circ u\|_{L^1} \leq c(g, \Omega) \|\nu\|_{\mathcal{M}}\).

(d) **Existence for \(L^1\) data**.

(Brezis & Strauss 72, Brezis 75; see also Brezis & Benilan 2003.)
A positive supersolution of the equation is moderate if

\[\int_{\Omega} (g \circ u) \rho \, dx < \infty. \]

(Mod)

Proposition.

(i) Every moderate positive supersolution has a measure boundary trace.

(ii) If \(u \) is a positive solution of the equation:

\[u \text{ is moderate} \iff u \text{ is dominated by an harmonic function} \iff u \text{ has a measure boundary trace.} \]

Definition

A measure is **good** if the boundary value problem has a solution.

A nonlinearity is **subcritical** if every \(\nu \in \mathcal{M}(\partial \Omega) \) is good.
Three basic problems

I Characterization of good measures.

II Removable singularities

III Classification of positive solutions of the equation in terms of their behavior at the boundary.

The latter requires a proper definition of boundary trace for positive non-moderate solutions of the equation.
These problems have been studied since the early 90’s focusing, in particular, on the equation

$$-\Delta u + u^q = 0, \quad q > 1,$$

(EQ)

in smooth domains. The study was carried on by probabilists and analysts in parallel. Regarding (EQ) these problems have been resolved, in part only recently. For more general nonlinearities and non-smooth domains there are still many challenging open questions.
Subcritical equations.

Definition. A measure \(\nu \in \mathcal{M}_+(\partial \Omega) \) is perfect if

\[
\int_{\Omega} g \circ \mathbb{P}[|\nu|] \rho \, dx < \infty.
\]

Lemma. If \(\nu \) is perfect then \(\nu \) is good.

But not every good measure is perfect. It is easy to construct \(L^1 \) functions that are not perfect measures.
Theorem. Consider the equation $-\Delta u + g \circ u = 0$ in a bounded Lipschitz domain Ω.

(i) Assume the basic assumptions on g (inc. $g(x, \cdot)$ is convex on \mathbb{R}_+ and odd). In addition suppose that, for every positive solution of the equation, g satisfies the following

$$g(u) \leq c(g, \Omega)u\rho^{-2}. \quad (*)$$

Then the condition

$$\int_{\Omega} g(x, \alpha P(x, y))\rho(x)dx < \infty \quad \forall y \in \partial \Omega, \alpha > 0, \quad (\text{SC})$$

is necessary and sufficient for g to be subcritical.

(ii) Suppose that $g(x, t) = \rho(x)^\beta h(t), h \in C(R)$, odd and monotone increasing, $\beta > -2$. If Ω is of class C^2 then (SC) is necessary and sufficient for subcriticality. In addition, the solution is stable w.r. to weak convergence of data.

(M 2014)
Remark. If $|g(x, t)| \leq |\bar{g}(x, t)|$, $(x, t) \in \Omega \times \mathbb{R}$ and \bar{g} is subcritical then g is subcritical.

(Gmira & Veron, 1991) provided a *sufficient* condition for subcriticality in C^2 domains. If g is independent of x it is equivalent to (SC). In the case $g(t) = t^q$ this condition reduces to $1 < q < q_c = \frac{N+1}{N-1}$ and it was proved that, in this case, it is also necessary.

A necessary and sufficient condition for subcriticality of $g(x, t) = \rho(x)^\beta t^q$, $\beta \geq 0$, in C^2 domains was obtained by (M & Veron, 2003). Other results of this type - in C^2 domains - were also derived in (M & Veron, 2004) and (Bhakta & M, 2014).
Characterization of good measures for (EQ).

Consider the supercritical case, $q \geq q_c$.

A. Removable singularities. Let u be a positive solution of (EQ) vanishing on the boundary outside a compact set F. If $C_{2/q,q'}(F) = 0$ then $u \equiv 0$. The condition is sharp.

B. Good measures Let $\nu \in \mathcal{M}(\partial \Omega)$. The boundary value problem

$$-\Delta u + u^q = 0 \quad \text{in } \Omega, \quad u = \nu \quad \text{on } \partial \Omega,$$

has a solution if and only if ν vanishes on sets of $C_{2/q,q'}$ capacity zero.
Characterization of good measures for (EQ).

Consider the supercritical case, \(q \geq q_c \).

A. Removable singularities. Let \(u \) be a positive solution of (EQ) vanishing on the boundary outside a compact set \(F \). If \(C_{2/q,q'/q'}(F) = 0 \) then \(u \equiv 0 \). The condition is sharp.

B. Good measures Let \(\nu \in \mathcal{M}(\partial \Omega) \). The boundary value problem

\[
-\Delta u + u^q = 0 \quad \text{in } \Omega, \quad u = \nu \quad \text{on } \partial \Omega,
\]

has a solution if and only if \(\nu \) vanishes on sets of \(C_{2/q,q'/q'} \) capacity zero.

These results have been established during the 90’s, by probabilistic methods (Le Gall, Dynkin and Kuznetsov for \(1 \leq q \leq 2 \)) and, in parallel, by analytic methods (M & Veron, \(q > 1 \)).
Recently these results have been extended to a general class of nonlinearities and Lipschitz domains (Ancona & M 2013).

Aside from the basic conditions on g it is assumed that, for every positive solution u of equation (1),

$$g(x, u) \leq c(g, \Omega) u(x) \rho(x)^{-2}. \quad (*)$$

This is valid for a large class of nonlinearities.

Examples:

$$\rho(x)^{\beta} h(t), \quad \beta > 0$$

where h could be almost every function satisfying the K–O condition.
Under this additional assumption results (A) and (B) remain valid w.r. to
\[-\Delta u + g \circ u = 0,\]
in bounded Lipschitz domains, provided that the Bessel capacity $C_{2/q, q'}$ is replaced by the following:

$$C_{g, \Delta}(F) = \sup\{\tau(F) : \tau \in \mathcal{M}_+(\partial \Omega), \int_{\Omega} (g \circ K[\tau] \psi \, dx \leq 1\}$$

for every Borel set $F \subset \partial \Omega$. Here K is the Martin kernel for $-\Delta$ in Ω and ψ is the first (positive) eigenfunction normalized at some point $x_0 \in \Omega$.

An important ingredient is a new result on representation of measures absolutely continuous w.r. to a capacity. This result applies in particular to $C_{g, \Delta}$ and extends results of Feyel & de la Pradelle, Baras & Pierre and Dal Maso that apply only to Bessel capacities.
Under this additional assumption results (A) and (B) remain valid w.r. to

\[-\Delta u + g \circ u = 0,\]

in bounded Lipschitz domains, provided that the Bessel capacity \(C_{2/q,q'} \) is replaced by the following:

\[
C_{g,\Delta}(F) = \sup\{\tau(F) : \tau \in \mathcal{M}_+(\partial \Omega), \int_{\Omega} (g \circ K[\tau] \psi \, dx \leq 1}\}
\]

for every Borel set \(F \subset \partial \Omega \). Here \(K \) is the Martin kernel for \(-\Delta\) in \(\Omega \) and \(\psi \) is the first (positive) eigenfunction normalized at some point \(x_0 \in \Omega \).

An important ingredient is a new result on representation of measures absolutely continuous w.r. to a capacity. This result applies in particular to \(C_{g,\Delta} \) and extends results of Feyel & de la Pradelle, Baras & Pierre and Dal Maso that apply only to Bessel capacities.
BVP with positive unbounded measure data in subcritical case.

I. The boundary trace
Recall that, if u is a positive solution of (EQ) then u has a boundary trace in $\mathcal{M}_+(\partial\Omega)$ if and only if

$$\int_{\Omega} u^q \rho \, dx < \infty.$$
(Mod)

Motivated by this fact here is a first definition of boundary trace: (M & Veron, 1996)

Definition
A point $y \in \partial\Omega$ is regular relative to the positive solution u if there exists a neighborhood Q of y such that:

$$\int_{Q \cap \partial\Omega} u^q \rho \, dx < \infty.$$

A point is singular relative to u if it is not regular.

The set of regular points $R(u)$ is open. Its complement is denoted by $S(u)$.
BVP with positive unbounded measure data in subcritical case.

I. The boundary trace
Recall that, if u is a positive solution of (EQ) then u has a boundary trace in $M_+(\partial \Omega)$ if and only if

$$\int_{\Omega} u^q \rho \, dx < \infty. \quad \text{(Mod)}$$

Motivated by this fact here is a *first* definition of boundary trace: (M & Veron,1996)

Definition A point $y \in \partial \Omega$ is *regular* relative to the positive solution u if there exists a neighborhood Q of y such that:

$$\int_{Q \cap \partial \Omega} u^q \rho \, dx < \infty.$$

A point is *singular* relative to u if it is not regular.

The set of regular points $\mathcal{R}(u)$ is open. Its complement is denoted by $S(u)$.
It follows that the boundary trace of u can be described by a pair (F, μ) where $F \subset \partial \Omega$ is a closed set μ is a Radon measure on $\partial \Omega \setminus F$. Alternatively we can describe the boundary trace as a measure $\bar{\mu}$ s.t. $\bar{\mu} = \infty$ on F and $\bar{\mu}$ is Radon on $\partial \Omega \setminus F$. The set of positive measures of this type is denoted by \mathcal{B}_{reg}.
II. Existence and uniqueness.

Theorem (M & Veron 1996) If $1 < q \leq q_c$ then the boundary value problem

$$-\Delta u + u^q = 0 \quad \text{in } \Omega, \quad u = \bar{\mu} \quad \text{on } \partial \Omega,$$

has a unique solution for every $\bar{\mu} \in \mathcal{B}_{\text{reg}}$.

A probabilistic definition of trace and a proof of existence and uniqueness for $q = 2$, $N = 2$, was given by Le Gall in 1995. The proof used the 'Wiener snake' technique. In 1997, Le Gall showed that the uniqueness for $\mu \in \mathcal{B}_{\text{reg}}$ fails if $q_c \leq q$.

Moshe Marcus

Boundary values with measure data
II. Existence and uniqueness.

Theorem (M & Veron 1996) If $1 < q \leq q_c$ then the boundary value problem

$$-\Delta u + u^q = 0 \quad \text{in } \Omega, \quad u = \bar{\mu} \quad \text{on } \partial \Omega,$$

has a unique solution for every $\bar{\mu} \in B_{\text{reg}}$.

A probabilistic definition of trace and a proof of existence and uniqueness for $q = 2$, $N = 2$, was given by Le Gall in 1995. The proof used the 'Wiener snake' technique.

In 1997, Le Gall showed that the uniqueness for $\mu \in B_{\text{reg}}$ fails if $q_c \leq q$.

BVP with positive unbounded measure data in supercritical case.

I. The boundary trace.
Dynkin (1998) introduced the useful concept of \(\sigma \)-moderate solution:

a positive solution of the equation is \(\sigma \)-moderate if it is the limit of an increasing sequence of moderate solutions.

Theorem. The boundary value problem for (EQ) has a unique solution in the family of \(\sigma \)-moderate solutions. (Dynkin & Kuznertsov 1998 for \(q_{c} \leq q \leq 2 \); M & Veron 2004/7 for every \(q \geq q_{c} \).)
BVP with positive unbounded measure data in supercritical case.

I. The boundary trace.
Dynkin (1998) introduced the useful concept of \(\sigma\)-moderate solution: a positive solution of the equation is \(\sigma\)-moderate if it is the limit of an increasing sequence of moderate solutions.

Following Le Gall’s observation two definitions of boundary trace were proposed for (EQ) in the supercritical case by Dynkin & Kuznertsov for \(q_c \leq q \leq 2\) and later by M & Veron for every \(q \geq q_c\). For \(\sigma\)-moderate solutions it is evident that the two definitions agree up to a set of \(C_{2/q,q'}\)-capacity zero. Later Verbitsky showed that, in fact, they agree in this sense for every positive solution.
BVP with positive unbounded measure data in supercritical case.

I. The boundary trace.

Dynkin (1998) introduced the useful concept of σ-moderate solution: a positive solution of the equation is σ-moderate if it is the limit of an increasing sequence of moderate solutions.

Following Le Gall’s observation two definitions of boundary trace were proposed for (EQ) in the supercritical case by Dynkin & Kuznertsov for $q_c \leq q \leq 2$ and later by M & Veron for every $q \geq q_c$. For σ-moderate solutions it is evident that the two definitions agree up to a set of $C_{2/q,q'}$-capacity zero. Later Verbitsky showed that, in fact, they agree in this sense for every positive solution.

Theorem. The boundary value problem for (EQ) has a unique solution in the family of σ-moderate solutions.

(Dynkin & Kuznertsov 1998 for $q_c \leq q \leq 2$; M & Veron 2004/7 for every $q \geq q_c$).
To complete the classification of positive solutions we have to address the question:

Are all positive solutions of (EQ) σ-moderate?
To complete the classification of positive solutions we have to address the question:

Are all positive solutions of (EQ) σ-moderate?

Proposition. Let $F \subset \partial \Omega$ be a compact set and let $\mathcal{U}(F)$ denote the family of solutions of (EQ) that are continuous in $\bar{\Omega} \setminus F$ and vanish on $\partial \Omega \setminus F$. Let $U_F = \sup \mathcal{U}(F)$. Then U_F is a solution that vanishes on $\partial \Omega \setminus F$.

U_F is called the **maximal solution** relative to F.
M’selati (Ph.D. thesis 2002 published in Memoirs AMS, 2004) proved: If $q = 2$, $N \geq 3$, then every positive solution is σ-moderate.

M’selati used the Wiener snake technique of Le Gall combined with analytic methods.

M & Veron (JEMS 2003) proved: For every compact set $F \subset \partial \Omega$ and all $q \geq q_c$ the maximal solution U_F is σ-moderate. The proof was based on sharp capacitary estimates for maximal solutions.

Dynkin (Colloquium Publications, AMS 2004) proved: For $q_c \leq q \leq 2$, every positive solution of (EQ) is σ-moderate. The proof used the two results mentioned above.

M (J.D’Anal. 2012) proved: For all $q \geq q_c$, every positive solution of (EQ) is σ-moderate.
If \(q = 2 \), \(N \geq 3 \), then every positive solution is \(\sigma \)-moderate.

M’selati used the Wiener snake technique of Le Gall combined with analytic methods.

M & Veron (JEMS 2003) proved:
For every compact set \(F \subset \partial \Omega \) and all \(q \geq q_c \) the maximal solution \(U_F \) is \(\sigma \)-moderate.

The proof was based on sharp capacitary estimates for maximal solutions.
M’selati (Ph.D. thesis 2002 published in Memoirs AMS, 2004) proved: If $q = 2$, $N \geq 3$, then every positive solution is σ-moderate.

M’selati used the Wiener snake technique of Le Gall combined with analytic methods.

M & Veron (JEMS 2003) proved:
For every compact set $F \subset \partial \Omega$ and all $q \geq q_c$ the maximal solution U_F is σ-moderate.

The proof was based on sharp capacitary estimates for maximal solutions.

Dynkin (Colloquium Publications, AMS 2004) proved:
For $q_c \leq q \leq 2$, every positive solution of (EQ) is σ-moderate.

The proof used the two results mentioned above.
If \(q = 2 \), \(N \geq 3 \), then every positive solution is \(\sigma \)-moderate.

M’selati used the Wiener snake technique of Le Gall combined with analytic methods.

M & Veron (JEMS 2003) proved:
For every compact set \(F \subset \partial \Omega \) and all \(q \geq q_c \) the maximal solution \(U_F \) is \(\sigma \)-moderate.

The proof was based on sharp capacitary estimates for maximal solutions.

Dynkin (Colloquium Publications, AMS 2004) proved:
For \(q_c \leq q \leq 2 \), every positive solution of (EQ) is \(\sigma \)-moderate.

The proof used the two results mentioned above.

M (J.D’Anal. 2012) proved:
For all \(q \geq q_c \), every positive solution of (EQ) is \(\sigma \)-moderate.
The proof falls into two main parts:

(i) For every $q \geq q_c$, every positive solution of (EQ) dominates a positive moderate solution.

(ii) Let $u^* := \sup\{w : w \text{ is a } g\text{-moderate solution, } 0 < w \leq u\}$. Then u^* is (obviously) σ-moderate and (non-obviously) $u^* = u$.
The main idea of the proof is as follows. Let u be a positive solution of (EQ) and denote

$$V = u^{q-1}.$$

Observe that u satisfies:

$$L^V u := -\Delta u + Vu = 0.$$

The Keller–Osserman estimate implies that

$$V(x) \leq c\text{dist}^{-2}(x, \partial \Omega).$$

Therefore one can apply to L^V classical results on Schrödinger equations.
A basic result of Ancona (Annals 87) states that any L^V harmonic function - in particular u - can be represented in the form

$$u(x) = \int_{\partial \Omega} K^V(x, \zeta) d\nu(\zeta) \quad \forall x \in \Omega.$$

where $\nu \in \mathcal{M}_+(\partial \Omega)$. Here K^V denotes the *Martin kernel* for L^V in Ω.

In the case of a solution u of (EQ) it can be shown that ν vanishes on sets of $\mathcal{C}_2/\mathcal{Q}$, \mathcal{Q}' capacity zero. Therefore, by a result of Baras and Pierre ν is the limit of an increasing sequence of measures $\{\nu_n\} \subset W^{-2/q, q} + (\partial \Omega)$. Every measure in this space is a perfect measure.
A basic result of Ancona (Annals 87) states that any L^V harmonic function - in particular u - can be represented in the form

$$u(x) = \int_{\partial \Omega} K^V(x, \zeta) d\nu(\zeta) \quad \forall x \in \Omega.$$

where $\nu \in \mathcal{M}_+(\partial \Omega)$.

Here K^V denotes the Martin kernel for L^V in Ω.

In the case of a solution u of (EQ) it can be shown that ν vanishes on sets of $C_{2/q,q'}$ capacity zero. Therefore, by a result of Baras and Pierre ν is the limit of an increasing sequence of measures $\{\nu_n\} \subset W^{-2/q,q}_+(\partial \Omega)$. Every measure in this space is a perfect measure.
The crucial step is the following:

Lemma If $\tau \in W^{-2/q,q}_+(\partial \Omega)$ then, either $\min(u, P[\tau]) > 0$ or $\tau \perp \nu$.

This implies that $\min(u, P[\tau]) > 0$ and proves the first step. The proof of the second step relies, among other things, on the fact that the maximal solution is σ-moderate.
The crucial step is the following:

Lemma If $\tau \in W_+^{-2/q,q}(\partial \Omega)$ then, either $\min(u, P[\tau]) > 0$ or $\tau \perp \nu$.

This implies that $\min(u, P\nu_n) > 0$ and proves the first step. The proof of the second step relies, among other things, on the fact that the maximal solution is σ-moderate.