Intermediation and Voluntary Exposure to Counterparty Risk

Maryam Farboodi

University of Chicago, Economics Department and Booth School of Business

August 27, 2014
Motivation

- Degree of interconnectedness among financial institution
 - Systemic risk and contagion
 - Too-connected-to-fail
 - Bailout and regulation
Motivation

- Degree of interconnectedness among financial institution
 - Systemic risk and contagion
 - Too-connected-to-fail
 - Bailout and regulation
- Bank incentives to form connections in the first place
 - Vice Chairman FRB Donald Kohn (Senate testimony, 6/2008)
 “[…] Supervisors must also be even more keenly aware of the manner in which those relationships within and among markets and market participants can change over time […]”
 - What is too-connected?
This Paper

- Study the endogenous formation of linkages among financial institutions as a network
Study the endogenous formation of linkages among financial institutions as a network

1. Which types of networks endogenously arise?
 - Do they qualitatively match the patterns we observe?

2. Are some more efficient than others?

3. Are there policies to improve equilibrium efficiency?
FRAMEWORK

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
Framework

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks

Segmented financial market

- Some banks invest and some lend to investing banks
- Restriction on inter-bank contracts
- Market incompleteness preserved among banks
FRAMEWORK

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks
- Segmented financial market
 - Some banks invest and some lend to investing banks
FRAMEWORK

- Dispersed set of small savers
- Set of randomly distributed entrepreneurs
 - Stochastic investment opportunities
- Incomplete markets
 - Savers need banks to invest on their behalf
 - Savers matched with some banks
 - Entrepreneurs matched with some other banks
- Segmented financial market
 - Some banks invest and some lend to investing banks
- Restriction on inter-bank contracts
 - Market incompleteness preserved among banks
Main Findings

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
Main Findings

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks
Main Findings

- **Equilibria:**
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks

- **Efficiency**
 - Centralized clearing house
Main Findings

- Equilibria:
 - Type 1: *core-periphery* equilibrium
 - Set of highly connected banks at core
 - Excessive exposure to counterparty risk
 - Type 2: under-investment equilibrium
 - Savings trapped in a subset of banks

- Efficiency
 - Centralized clearing house

- Policy
 - Introduction of centralized clearing house
 - Limit on number of counterparties
OUTLINE

1 Model

2 Inter-bank Network

3 Generalization
ENVIRONMENT

- Three dates: \(t = 0, 1, 2 \)
- Two type of banks (\(\mathbb{N} \))
 - \(NI \): banks who can never invest
 - Raise one unit from a continuum of households (debt)
 - Each household matched to a single bank
 - \(I \): banks who can invest
 - Potential to make risky investment
 - Borrow on the inter-bank market
- Value of other businesses for each bank: \(V_j \)
 - Non-pledgable
 - Lost in case of default
- Risk neutrality, no discounting
Risky Technology

- **Date 1**
 - At each I, investment opportunity arrives with iid probability q
 - *Active investing bank*: $I \in \mathbb{I}_R$
 - Initial investment made

- **Date 2**
 - Per-unit iid return across investing banks \tilde{R}

\[
\tilde{R} = \begin{cases}
 R & \text{with probability } p \\
 0 & \text{otherwise}
\end{cases}
\]

- Scalable
Financial Network

- Market incompleteness
 - Loans made after banks get investment opportunities
 - Relationship must be established before the realization of investment opportunities
 - Potential lending relationship \((E)\)
 - All contracts are debt

- **Financial network** \(G = (\mathbb{N}, E)\)
 - Collection of banks and their lending relationships
Financial Network

- Market incompleteness
 - Loans made after banks get investment opportunities
 - Relationship must be established before the realization of investment opportunities
 - Potential lending relationship \((E)\)
 - All contracts are debt

- Financial network \(G = (N, E)\)
 - Collection of banks and their lending relationships

- Equilibrium concept: Group Stability
Feasibility

- Minimum size constraint
 - Minimum size on date one loans is 1
 - Lender must honor the promise ("conditionally")

- Feasibility

(A) Infeasible set of credit lines

(B) Feasible set of credit lines
Division of Surplus

- Banks borrow and lend to invest
- Not competitive
- Surplus division
 - Surplus allocation depends on endogenous network structure
 - Intermediators get positive share
 - Rents cannot be negotiated away
- Inherent rent seeking behavior
Timing

- **Date 0**
 - Funding raised from households
 - Network forms: banks establish potential lending relationships *(Subject to feasibility)*

- **Date 1**
 - Risky investment opportunities arrive
 - Loans made

- **Date 2**
 - Return realized
 - Debt paid back
 - Bank fails and loses V_j if unable to pay back obligation
Outline

1 Model

2 Inter-bank Network

3 Generalization
Example ($t = 0$)

\[\text{Wachovia} \quad \text{Lehman} \]

\[\text{NI}_1 \quad \text{NI}_2 \]

\[\text{NI}_1 \quad \text{NI}_2 \]

\[\text{Return to lender} \]

\[p(D_1 - D_2) \leq (1 - p)V \]

Intermediation spread versus cost of failure
Example \((t = 0)\)

\[
\begin{align*}
Wachovia & \leftrightarrow Lehman \\
NI_1 & \rightarrow NI_2 \\
NI_1 & \rightarrow NI_2 \\
HH & \rightarrow HH \\
HH & \rightarrow HH
\end{align*}
\]
Example ($t = 1$): Only Lehman has Investment
Example (t = 2): Project Fails

\[D_1 > D_2 : \text{Return to lender} \]

\[p(D_1 - D_2) \geq (1 - p)V_I : \text{Intermediation spread versus cost of failure} \]
Example \((t = 2)\): Project Succeeds

- \(D_1 > D_2\): Return to lender
- \(p(D_1 - D_2) \leq (1 - p)V_I\): Intermediation spread versus cost of failure
Stability versus Efficiency

(A) Inefficient Stable

\[
\frac{\text{Intermediation Rent}}{\text{Cost of Failure}} > Z
\]

(B) Efficient Unstable
Misaligned Incentives

- **Efficiency**: scale of investment versus loss in the event of failure
 - *Efficient Intermediator*: imposes minimal extra cost of failure
- **Individual incentives**: return versus loss of failure
 - *Intermediation spread* versus *cost of default*
 - *Redistribution* versus *Social Loss*
- *Equilibrium Intermediator*: offers highest rate of return
- Does he minimize the cost?
Outline

1 Model

2 Inter-bank Network

3 Generalization
General Result

Theorem

When intermediation rents are sufficiently high, there is a family of equilibria that consist of a subset of I banks at the core, forming a digraph. Each I bank at the core borrows from a subset of NI banks, and lends to every I bank outside the core. These equilibria are all inefficient.

(A) Equilibrium

(B) Efficient
Diversification

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{Y_1+Y_2}{2} \tilde{R}$</td>
<td>$Y_1 D_{11}$</td>
</tr>
<tr>
<td>$\frac{Y_1-Y_2}{2} D_{21}$</td>
<td>(A) Net Lender (I_1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{Y_1+Y_2}{2} \tilde{R}$</td>
<td>$Y_2 D_{22}$</td>
</tr>
<tr>
<td>$\frac{Y_1-Y_2}{2} D_{21}$</td>
<td>(B) Net Borrower (I_1)</td>
</tr>
</tbody>
</table>

- $Y_1 > Y_2$
- $y = \frac{Y_2}{Y_1}, \ 0 < y \leq 1$
Diversification

- Net lender

\[R > \frac{2}{p(2-p)} \]

\[R < \frac{2}{p(2-p)} \]
Policy

- **Central Clearing Party (CCP)**
 - Prevents exposure to counterparty risk among banks with investment opportunity
 - Fully funds all the projects

- **Cap on Number of Counterparties a bank can lend to**
 - Increases the length of intermediation chains
 - Shifts the composition of equilibrium family towards larger cores
 - Larger loss in the event of melt down

Diagram:

![Diagram showing equilibrium concept](attachment:equilibrium_diagram.png)
Conclusion

- **Endogenous formation of financial network has implications**
 - Overall structure of inter-bank network
 - Core-periphery
 - Inter-bank exposures
 - High gross and low net exposure among banks with risky investment at the core
 - **Efficiency**
 - Excessive exposure to counterpart risk
 - Inefficient intermediation (and dis-intermediation)

- **Policy Implications**
 - Central clearing house
 - Cap on number of counterparties
 - *Future work:* network-based capital requirements
Exposure to Counterparty Risk in the Financial Crisis

- September 15: Lehman filed for bankruptcy
- First wave: holders of unsecured CP and lenders in tri-party repo
 - Wachovia (Evergreens Investment)
 - Reserve Management Company (Reserve Primary Fund)
Exposure to Counterparty Risk in the Financial Crisis

- September 15: Lehman filed for bankruptcy
- First wave: holders of unsecured CP and lenders in tri-party repo
 - Wachovia (Evergreens Investment)
 - Reserve Management Company (Reserve Primary Fund)
- Havenrock
 - IKB ABCP conduit (Rhineland): RMBS and CDO investment
 - CaLyon: liquidity backstop; FGIC: senior credit risk protection
- CDO crashed \(\rightarrow\) FGIC unable to honor guarantee \(\rightarrow\) CaLyon
 significant credit loss \(\rightarrow\) capital injection by French government
Stylized Facts

- Liability structure among banks looks like a core-periphery graph
 - Federal funds market
 - International inter-bank markets
 - Germany, Austria, Netherlands, Brazil
 - Municipal bond market
- OTC derivative exposures
 - Dealer: High gross and small net positions
 - Aggregate trade quantity:
 - Dealer-to-dealer: \(\sim 60\% \)
 - Customer-to-dealer: \(\sim 40\% \)
 - Customer-to-customer: \(< 1\% \)
General Rule for Division of Surplus

- Every member of intermediation chain gets strictly positive share
- Elimination of each intermediary
 - Weakly increase every other bank’s share (along the chain)
 - Strictly increase lender’s share
- Anonymous and depends only on the chain
- Special case (α-rule)
 - Each bank only cares about distance to final borrower
General α-Rule

- $j < K$ gets $(1 - \alpha)\alpha^j X$
- K gets $1 + \alpha^K X$
- Shares only depend on distance from final borrower
- Face value of debt set to reflect shares
 - $D_j - D_k = \text{intermediation spread between } k \text{ and } j$

\[\alpha\text{-rule}\]
Date 1: Payoff Example

- $X = pR - 1$: expected net surplus of investing one unit

- $D_1 = D_{11} = D_{12} = \frac{\alpha X + 1}{p}$

- $D_2 = D_{22} = \frac{\alpha^2 X + 1}{p}$

- Intermediation spread = $D_1 - D_2$
 - Expected intermediation rent = $p(D_1 - D_2) = \alpha(1 - \alpha)X$
Long Term Relationship Lending

- **Theory**
 - Switching costs
 - Monitoring costs: costly information acquisition

- **Empirical evidence**
 - Fed fund market: %60 of inter-bank borrowing comes from the same lender over one month
 - Hedge funds: maintain at most two prime brokers and rarely switch
Disabling Diversification

- \(j \) has multiple active commitments
 - All of its funding allocated randomly to exactly one of them
- An \(I \) bank with an active investment opportunity
 - Invests only in own project
Efficient Direct Lending

Efficiency

\[pR - 1 > (1 - p)(V_I + V_{NI}) \]

Borrower and lender participation constraint

\[(1 - \alpha)(pR - 1) > (1 - p)V_I \]
\[\alpha(pR - 1) > (1 - p)V_{NI} \]
Robustness

- Division of surplus
 - Partial renegotiation and side payments as long as not fully competitive
 - Default cost taken into account
- Market incompleteness
 - No minimum size constraint but loans made prior to realization of investment opportunities
- Correlated returns