Spectral Theory of Orthogonal Polynomials

Periodic and Ergodic Spectral Problems

Issac Newton Institute, January, 2015

Barry Simon
IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lecture 1: Introduction and Overview
Spectral Theory of Orthogonal Polynomials

- Lecture 1: Introduction and Overview
- Lecture 2: Szegő Theorem for OPUC
- Lecture 3: Three Kinds of Polynomial Asymptotics
- Lecture 4: Potential Theory
- Lecture 5: Isospectral Tori
- Lecture 6: Fuchsian Groups
- Lecture 7: Chebyshev Polynomials, I
- Lecture 8: Chebyshev Polynomials, II
References

What is spectral theory?

Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.
What is spectral theory?

Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.

Spectral characteristics means eigenvalues or scattering data or, more generally, spectral measures.
What is spectral theory?

Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.

Spectral characteristics means eigenvalues or scattering data or, more generally, spectral measures.

Examples include
What is spectral theory?

Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.

Spectral characteristics means eigenvalues or scattering data or, more generally, spectral measures.

Examples include

- Can you hear the shape of a drum?
Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.

Spectral characteristics means eigenvalues or scattering data or, more generally, spectral measures.

Examples include

- Can you hear the shape of a drum?
- Computer tomography
What is spectral theory?

Spectral theory is the general theory of the relation of the fundamental parameters of an object and its “spectral” characteristics.

Spectral characteristics means eigenvalues or scattering data or, more generally, spectral measures.

Examples include

- Can you hear the shape of a drum?
- Computer tomography
- Isospectral manifold for the harmonic oscillator
What is spectral theory?

The *direct problem* goes from the object to spectra.
What is spectral theory?

The *direct problem* goes from the object to spectra. The *inverse problem* goes backwards.
The *direct problem* goes from the object to spectra. The *inverse problem* goes backwards. The direct problem is typically easy while the inverse problem is typically hard.
What is spectral theory?

The *direct problem* goes from the object to spectra. The *inverse problem* goes backwards. The direct problem is typically easy while the inverse problem is typically hard. For example, the domain of definition of the harmonic oscillator isospectral “manifold” is unknown. It is not even known if it is connected!
OPs

Orthogonal polynomials on the real line (OPRL) and on the unit circle (OPUC) are particularly useful because the inverse problems are easy—indeed the inverse problem is the OP definition as we’ll see.
Orthogonal polynomials on the real line (OPRL) and on the unit circle (OPUC) are particularly useful because the inverse problems are easy—indeed the inverse problem is the OP definition as we’ll see.

OPs also enter in many application—both specific polynomials and the general theory.

Indeed, my own interest came from studying discrete Schrödinger operators on $\ell^2(\mathbb{Z})$

$$ (Hu)_n = u_{n+1} + u_{n-1} + Vu_n $$

and the realization that when restricted to \mathbb{Z}_+, one had a special case of OPRL.
μ will be a probability measure on \mathbb{R}. We’ll always suppose that μ has bounded support $[a, b]$ which is not a finite set of points. (We then say that μ is non-trivial.) This implies that $1, x, x^2, \ldots$ are independent since $\int |P(x)|^2 \ d\mu = 0 \Rightarrow \mu$ is supported on the zeroes of P.
μ will be a probability measure on \(\mathbb{R} \). We’ll always suppose that \(\mu \) has bounded support \([a, b]\) which is not a finite set of points. (We then say that \(\mu \) is non-trivial.) This implies that \(1, x, x^2, \ldots \) are independent since
\[
\int |P(x)|^2 \, d\mu = 0 \Rightarrow \mu \text{ is supported on the zeroes of } P.
\]
Apply Gram Schmidt to \(1, x, \ldots \) and get monic polynomials
\[
P_j(x) = x^j + \alpha_{j,1}x^{j-1} + \ldots
\]
and orthonormal (ON) polynomials
\[
p_j = P_j/\|P_j\|
\]
More generally we can do the same for any probability measure of bounded support on \mathbb{C}.
More generally we can do the same for any probability measure of bounded support on \mathbb{C}.

One difference from the case of \mathbb{R}, the linear combination of $\{x^j\}_{j=0}^{\infty}$ are dense in $L^2(\mathbb{R}, d\mu)$ by Weierstrass. This may or may not be true if $\text{supp}(d\mu) \not\subset \mathbb{R}$.
More generally we can do the same for any probability measure of bounded support on \(\mathbb{C} \).

One difference from the case of \(\mathbb{R} \), the linear combination of \(\{x^j\}_{j=0}^{\infty} \) are dense in \(L^2(\mathbb{R}, d\mu) \) by Weierstrass. This may or may not be true if \(\text{supp}(d\mu) \not\subset \mathbb{R} \).

If \(d\mu = d\theta/2\pi \) on \(\partial \mathbb{D} \), the span of \(\{z^j\}_{j=0}^{\infty} \) is not dense in \(L^2 \) (but is only \(H^2 \)). Perhaps, surprisingly, we’ll see later that there are measures \(d\mu \) on \(\partial \mathbb{D} \) for which they are dense (e.g., \(\mu \) purely singular).
More generally we can do the same for any probability measure of bounded support on \mathbb{C}.

One difference from the case of \mathbb{R}, the linear combination of $\{x^j\}_{j=0}^{\infty}$ are dense in $L^2(\mathbb{R}, d\mu)$ by Weierstrass. This may or may not be true if $\text{supp}(d\mu) \not\subset \mathbb{R}$.

If $d\mu = d\theta/2\pi$ on $\partial \mathbb{D}$, the span of $\{z^j\}_{j=0}^{\infty}$ is not dense in L^2 (but is only H^2). Perhaps, surprisingly, we’ll see later that there are measures $d\mu$ on $\partial \mathbb{D}$ for which they are dense (e.g., μ purely singular).

More significantly, the argument we’ll give for our recursion relation fails if $\text{supp}(d\mu) \not\subset \mathbb{R}$.
Since P_k is monic and $\{P_j\}_{j=0}^{k+1}$ span polynomials of degree at most $k + 1$, we have

$$x P_k = P_{k+1} + \sum_{j=0}^{k} B_{k,j} P_j$$

Clearly

$$B_{k,j} = \langle P_j, x P_k \rangle / \| P_j \|^2$$
Since P_k is monic and $\{P_j\}_{j=0}^{k+1}$ span polynomials of degree at most $k + 1$, we have

$$xP_k = P_{k+1} + \sum_{j=0}^{k} B_{k,j} P_j$$

Clearly

$$B_{k,j} = \langle P_j, xP_k \rangle / \|P_j\|^2$$

Now we use

$$\langle P_j, xP_k \rangle = \langle xP_j, P_k \rangle$$

(need $d\mu$ on \mathbb{R}!!)
Since P_k is monic and $\{P_j\}_{j=0}^{k+1}$ span polynomials of degree at most $k + 1$, we have

$$x P_k = P_{k+1} + \sum_{j=0}^{k} B_{k,j} P_j$$

Clearly

$$B_{k,j} = \frac{\langle P_j, x P_k \rangle}{\| P_j \|^2}$$

Now we use

$$\langle P_j, x P_k \rangle = \langle x P_j, P_k \rangle$$

(need $d\mu$ on \mathbb{R}!!)

If $j < k - 1$, this is zero.
Since P_k is monic and $\{P_j\}_{j=0}^{k+1}$ span polynomials of degree at most $k + 1$, we have

$$xP_k = P_{k+1} + \sum_{j=0}^{k} B_{k,j} P_j$$

Clearly

$$B_{k,j} = \frac{\langle P_j, xP_k \rangle}{\|P_j\|^2}$$

Now we use

$$\langle P_j, xP_k \rangle = \langle xP_j, P_k \rangle$$

(need $d\mu$ on \mathbb{R}!!)

If $j < k - 1$, this is zero.

If $j = k - 1$, $\langle P_{k-1}, xP_k \rangle = \langle xP_{k-1}, P_k \rangle = \|P_k\|^2$.
Thus \((P_{-1} \equiv 0)\); \(\{a_j\}_{j=1}^\infty, \{b_j\}_{j=1}^\infty\) : Jacobi recursion

\[xP_N = P_{N+1} + b_{N+1}P_N + a_N^2 P_{N-1} \]
Thus \((P_{-1} \equiv 0) \); \(\{a_j\}_{j=1}^{\infty}, \{b_j\}_{j=1}^{\infty} : \text{Jacobi recursion} \)

\[
xP_N = P_{N+1} + b_{N+1}P_N + a_N^2P_{N-1}
\]

\[
b_N \in \mathbb{R}, \quad a_N = \|P_N\|/\|P_{N-1}\|
\]

These are called \textit{Jacobi parameters.}
Thus \((P_{-1} \equiv 0); \{a_j\}_j^\infty, \{b_j\}_j^\infty : \text{Jacobi recursion} \)

\[
xP_N = P_{N+1} + b_{N+1}P_N + a_N^2P_{N-1}
\]

\(b_N \in \mathbb{R}, \quad a_N = \|P_N\|/\|P_{N-1}\| \)

These are called \textit{Jacobi parameters}. This implies \(\|P_N\| = a_N a_{N-1} \ldots a_1 \) (since \(\|P_0\| = 1 \)).
OPRL basics

Thus \((P_{-1} \equiv 0)\); \(\{a_j\}_{j=1}^{\infty}, \{b_j\}_{j=1}^{\infty} : \text{Jacobi recursion}\)

\[
xP_N = P_{N+1} + b_{N+1}P_N + a_N^2 P_{N-1}
\]

\(b_N \in \mathbb{R}, \quad a_N = \|P_N\|/\|P_{N-1}\|
\)

These are called \textit{Jacobi parameters}. This implies

\[
\|P_N\| = a_N a_{N-1} \ldots a_1 \quad \text{(since} \quad \|P_0\| = 1).
\]

This, in turn, implies \(p_n = P_n/a_1 \ldots a_n\) obeys

\[
xp_n = a_{n+1}p_{n+1} + b_n p_n + a_n p_{n-1}
\]
We have thus solved the inverse problem, i.e., μ is the spectral data and $\{a_n, b_n\}_{n=1}^{\infty}$ are the descriptors of the object.
We have thus solved the inverse problem, i.e., μ is the spectral data and $\{a_n, b_n\}_{n=1}^{\infty}$ are the descriptors of the object.

In the orthonormal basis $\{p_n\}_{n=0}^{\infty}$, multiplication by x has the matrix

$$J = \begin{pmatrix} b_1 & a_1 & 0 & 0 & \ldots \\ a_1 & b_2 & a_2 & 0 & \ldots \\ 0 & a_2 & b_3 & a_3 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

called a \textit{Jacobi matrix}.
Since

\[b_n = \int xp_{n-1}^2(x) \, d\mu, \quad a_n = \int xp_{n-1}(x)p_n(x) \, d\mu \]

\[\text{supp}(\mu) \subset [-R, R] \Rightarrow |b_n| \leq R, \, |a_n| \leq R. \]
Favard’s Theorem

Since

\[b_n = \int x p_{n-1}^2(x) \, d\mu, \quad a_n = \int x p_{n-1}(x) p_n(x) \, d\mu \]

\[\text{supp}(\mu) \subset [-R, R] \Rightarrow |b_n| \leq R, \ |a_n| \leq R. \]

Conversely, if \(\sup_n (|a_n| + |b_n|) = \alpha < \infty \), \(J \) is a bounded matrix of norm at most \(3\alpha \). In that case, the spectral theorem implies there is a measure \(d\mu \) so that

\[\langle (1, 0, \ldots)^t, J^\ell (1, 0, \ldots)^t \rangle = \int x^\ell \, d\mu(x) \]
Favard’s Theorem

Since

\[b_n = \int x p_{n-1}^2(x) \, d\mu, \quad a_n = \int x p_{n-1}(x) p_n(x) \, d\mu \]

\(\text{supp}(\mu) \subset [-R, R] \Rightarrow |b_n| \leq R, \ |a_n| \leq R. \)

Conversely, if \(\sup_n (|a_n| + |b_n|) = \alpha < \infty \), \(J \) is a bounded matrix of norm at most \(3\alpha \). In that case, the spectral theorem implies there is a measure \(d\mu \) so that

\[\langle (1, 0, \ldots)^t, J^\ell (1, 0, \ldots)^t \rangle = \int x^\ell \, d\mu(x) \]

If one uses Gram-Schmidt to orthonormalize \(\{ J^\ell (1, 0, \ldots)^t \}_{\ell=0}^\infty \), one finds \(\mu \) has Jacobi matrix exactly given by \(J \).
Favard’s Theorem

We have thus proven Favard’s Theorem (his paper was in 1935; really due to Stieltjes in 1894 or to Stone in 1932).
We have thus proven Favard’s Theorem (his paper was in 1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard’s Theorem. *There is a one–one correspondence between bounded Jacobi parameters*

\[
\{a_n, b_n\}_{n=1}^\infty \in \left((0, \infty) \times \mathbb{R}\right)^\infty
\]

and non-trivial probability measures, \(\mu\), of bounded support via:

\[
\mu \Rightarrow \{a_n, b_n\} \quad (OP \ recursion)
\]

\[
\{a_n, b_n\} \Rightarrow \mu \quad (Spectral \ Theorem)
\]
We have thus proven Favard’s Theorem (his paper was in 1935; really due to Stieltjes in 1894 or to Stone in 1932).

Favard’s Theorem. There is a one–one correspondence between bounded Jacobi parameters

\[\{a_n, b_n\}_{n=1}^{\infty} \in \left((0, \infty) \times \mathbb{R} \right) \]

and non-trivial probability measures, \(\mu \), of bounded support via:

\[\mu \Rightarrow \{a_n, b_n\} \quad (OP \ recursion) \]

\[\{a_n, b_n\} \Rightarrow \mu \quad (Spectral \ Theorem) \]

There are also results for \(\mu \)'s with unbounded support so long as \(\int x^n \, d\mu < \infty \). In this case, \(\{a_n, b_n\} \Rightarrow \mu \) may not be unique because \(J \) may not be essentially self-adjoint on vectors of finite support.
Let $d\mu$ be a non-trivial probability measure on $\partial \mathbb{D}$. As in the OPRL case, we use Gram-Schmidt to define monic OPs, $\Phi_n(z)$ and ON OP’s $\varphi_n(z)$.
OPUC basics

Let $d\mu$ be a non-trivial probability measure on $\partial \mathbb{D}$. As in the OPRL case, we use Gram-Schmidt to define monic OPs, $\Phi_n(z)$ and ON OP’s $\varphi_n(z)$.

In the OPRL case, if z is multiplication by the underlying variable, $z^* = z$. This is replaced by $z^*z = 1$.
Let \(d\mu \) be a non-trivial probability measure on \(\partial \mathbb{D} \). As in the OPRL case, we use Gram-Schmidt to define monic OPs, \(\Phi_n(z) \) and ON OP’s \(\varphi_n(z) \).

In the OPRL case, if \(z \) is multiplication by the underlying variable, \(z^* = z \). This is replaced by \(z^*z = 1 \).

In the OPRL case, \(P_{n+1} - xP_n \perp \{1, x_1, \ldots, x_{n-2}\} \).
In the OPUC case, \(\Phi_{n+1} - z\Phi_n \perp \{z, \ldots, z^n\} \), since

\[
\langle z\Phi, z^j \rangle = \langle \Phi, z^{j-1} \rangle
\]

if \(j \geq 1 \).
In the OPUC case, $\Phi_{n+1} - z\Phi_n \perp \{z, \ldots, z^n\}$, since

$$\langle z\Phi, z^j \rangle = \langle \Phi, z^{j-1} \rangle$$

if $j \geq 1$.

In the OPRL case, we used $\deg P = n$ and $P \perp \{1, x, \ldots, x^{n-2}\} \Rightarrow P = c_1 P_n + c_2 P_{n-1}$.

In the OPUC case, we want to characterize $\deg P = n$, $P \perp \{z, z^2, \ldots, z^n\}$.
Define * on degree n polynomials to themselves by

$$Q^*(z) = z^n Q\left(\frac{1}{\bar{z}}\right)$$

(bad but standard notation!) or

$$Q(z) = \sum_{j=0}^{n} c_j z^j \Rightarrow Q^*(z) = \sum_{j=0}^{n} \bar{c}_{n-j} z^j$$
Define * on degree n polynomials to themselves by

$$Q^*(z) = z^n Q\left(\frac{1}{\bar{z}}\right)$$

(bad but standard notation!) or

$$Q(z) = \sum_{j=0}^{n} c_j z^j \Rightarrow Q^*(z) = \sum_{j=0}^{n} \overline{c_{n-j}} z^j$$

Then, * is unitary and so for deg $Q = n$

$$Q \perp \{1, \ldots, z^{n-1}\} \iff Q = c \Phi_n$$

is equivalent to

$$Q \perp \{z, \ldots, z^n\} \iff Q = c \Phi_n^*$$
Thus, we see, there are parameters $\{\alpha_n\}_{n=0}^{\infty}$ (called Verblunsky coefficients) so that

$$\Phi_{n+1}(z) = z\Phi_n - \alpha_n \Phi_n^*(z)$$

This is the Szegő Recursion (History: Szegő and Geronimus in 1939; Verblunsky in 1935–36)
Thus, we see, there are parameters \(\{\alpha_n\}_{n=0}^{\infty} \) (called Verblunsky coefficients) so that

\[
\Phi_{n+1}(z) = z\Phi_n - \overline{\alpha}_n \Phi^*_n(z)
\]

This is the Szegő Recursion (History: Szegő and Geronimus in 1939; Verblunsky in 1935–36)

Applying * for deg \(n + 1 \) polynomials to this yields

\[
\Phi^*_{n+1}(z) = \Phi^*_n(z) - \alpha_n z \Phi_n
\]
Szegő recursion and Verblunsky coefficients

Thus, we see, there are parameters \(\{\alpha_n\}_{n=0}^{\infty} \) (called Verblunsky coefficients) so that

\[
\Phi_{n+1}(z) = z\Phi_n - \bar{\alpha}_n \Phi_n^*(z)
\]

This is the Szegő Recursion (History: Szegő and Geronimus in 1939; Verblunsky in 1935–36)

Applying \(*\) for deg \(n + 1 \) polynomials to this yields

\[
\Phi^*_{n+1}(z) = \Phi^*_n(z) - \alpha_n z\Phi_n
\]

The strange looking \(-\bar{\alpha}_n\) rather than say \(+\alpha_n\) is to have the \(\alpha_n\) be the Schur parameter of the Schur function of \(\mu\) (Geronimus); also the Verblunsky parameterization then agrees with \(\alpha_n\). These are discussed in [OPUC1].
\(\Phi_n \) monic \(\Rightarrow \) constant term in \(\Phi^*_n \) is 1 \(\Rightarrow \) \(\Phi^*_n(0) = 1 \).
Szegő recursion and Verblunsky coefficients

\[\Phi_n \text{ monic } \Rightarrow \text{ constant term in } \Phi_n^* \text{ is } 1 \Rightarrow \Phi_n^*(0) = 1. \]

This plus \(\Phi_{n+1} = z\Phi_n - \bar{\alpha}_n \Phi_n^*(z) \) implies

\[-\Phi_{n+1}(0) = \alpha_n \]

i.e., \(\Phi_n \) determines \(\alpha_{n-1} \).
For OPRL, we saw $\|P_{n+1}\|/\|P_n\| = a_{n+1}$. We are looking for the analog for OPUC.
Szegő recursion and Verblunsky coefficients

For OPRL, we saw $\|P_{n+1}\|/\|P_n\| = a_{n+1}$. We are looking for the analog for OPUC.

Szegő Recursion $\Rightarrow \Phi_{n+1} + \bar{\alpha}_n \Phi_n^* = z\Phi_n$
For OPRL, we saw $\|P_{n+1}\|/\|P_n\| = a_{n+1}$. We are looking for the analog for OPUC.

Szegő Recursion $\Rightarrow \Phi_{n+1} + \bar{\alpha}_n \Phi^*_n = z\Phi_n$

$$\Phi_{n+1} \perp \Phi^*_n \Rightarrow \|\Phi_{n+1}\|^2 + |\alpha_n|^2 \|\Phi_n\|^2 = \|z\Phi_n\|^2$$
For OPRL, we saw $\|P_{n+1}\|/\|P_n\| = a_{n+1}$. We are looking for the analog for OPUC.

Szegő Recursion $\Rightarrow \Phi_{n+1} + \bar{\alpha}_n \Phi_n^* = z\Phi_n$

$$\Phi_{n+1} \perp \Phi_n^* \Rightarrow \|\Phi_{n+1}\|^2 + |\alpha_n|^2 \|\Phi_n\|^2 = \|z\Phi_n\|^2$$

Multiplication by z unitary plus * antiunitary \Rightarrow

$$\|\Phi_{n+1}\|^2 = \rho_n^2 \|\Phi_n\|^2; \quad \rho_n^2 = 1 - |\alpha_n|^2$$
For OPRL, we saw $\|P_{n+1}\| / \|P_n\| = a_{n+1}$. We are looking for the analog for OPUC.

Szegő Recursion $\Rightarrow \Phi_{n+1} + \bar{\alpha}_n \Phi_n^* = z \Phi_n$

$$\Phi_{n+1} \perp \Phi_n^* \Rightarrow \|\Phi_{n+1}\|^2 + |\alpha_n|^2 \|\Phi_n\|^2 = \|z \Phi_n\|^2$$

Multiplication by z unitary plus * antiunitary \Rightarrow

$$\|\Phi_{n+1}\|^2 = \rho_n^2 \|\Phi_n\|^2; \quad \rho_n^2 = 1 - |\alpha_n|^2$$

which implies $|\alpha_n| < 1$ (i.e., $\alpha_n \in \mathbb{D}$) and

$$\|\Phi_n\| = \rho_{n-1} \cdots \rho_0$$
Szegő recursion and Verblunsky coefficients

\[
\begin{pmatrix}
\varphi_{n+1} \\
\varphi^*_{n+1}
\end{pmatrix}
= A_n(z)
\begin{pmatrix}
\varphi_n \\
\varphi^*_n
\end{pmatrix}
x; \quad A_n = \rho_n^{-1}
\begin{pmatrix}
z & -\bar{\alpha}_n \\
-\alpha_n z & 1
\end{pmatrix}
\]
Szegő recursion and Verblunsky coefficients

\[
\begin{pmatrix}
\varphi_{n+1} \\
\varphi_{n+1}^*
\end{pmatrix} = A_n(z) \begin{pmatrix}
\varphi_n \\
\varphi_n^*
\end{pmatrix} x; \quad A_n = \rho_n^{-1} \begin{pmatrix}
z & -\bar{\alpha}_n \\
-\alpha_n z & 1
\end{pmatrix}
\]

\[
\det A_n \neq 0 \text{ if } z \neq 0, \text{ so we can get } \varphi_n (\Phi_n) \text{ from } \varphi_{n+1} (\Phi_{n+1}) \text{ by}
\]
Szegő recursion and Verblunsky coefficients

\[
\begin{pmatrix}
\varphi_{n+1} \\
\varphi_{n+1}^*
\end{pmatrix}
= A_n(z) \begin{pmatrix}
\varphi_n \\
\varphi_n^*
\end{pmatrix} x; \quad A_n = \rho_n^{-1} \begin{pmatrix}
z & -\bar{\alpha}_n \\
-\alpha_n z & 1
\end{pmatrix}
\]

\[\det A_n \neq 0 \text{ if } z \neq 0, \text{ so we can get } \varphi_n (\Phi_n) \text{ from } \varphi_{n+1} (\Phi_{n+1}) \text{ by}\]

\[z\Phi_n = \rho_n^{-2} [\Phi_{n+1} + \bar{\alpha}_n \Phi_{n+1}^*]\]
\[\Phi_n^* = \rho_n^{-2} [\Phi_{n+1} + \alpha_n \Phi_{n+1}]\]
We see that \(\Phi_{n+1} \) determines \(\alpha_n \), so by induction and inverse recursion,
Szegő recursion and Verblunsky coefficients

We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) *If two measures have the same Φ_n, they have the same $\{\Phi_j\}_{j=0}^{n-1}$ and $\{\alpha_j\}_{j=0}^{n-1}$.***
Szegő recursion and Verblunsky coefficients

We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) If two measures have the same Φ_n, they have the same $\{\Phi_j\}_{j=0}^{n-1}$ and $\{\alpha_j\}_{j=0}^{n-1}$.

A similar argument to the one that led to $|\alpha_n| < 1$ yields

Theorem All zeros of Φ_n lie in \mathbb{D}.
We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) *If two measures have the same Φ_n, they have the same $\{\Phi_j\}_{j=0}^{n-1}$ and $\{\alpha_j\}_{j=0}^{n-1}$.*

A similar argument to the one that led to $|\alpha_n| < 1$ yields

Theorem *All zeros of Φ_n lie in \mathbb{D}.*

Proof $\Phi_n(z_0) = 0 \Rightarrow \Phi_n = (z - z_0)p$, $\deg p = n - 1$
Szegő recursion and Verblunsky coefficients

We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) *If two measures have the same Φ_n, they have the same $\{\Phi_j\}_{j=0}^{n-1}$ and $\{\alpha_j\}_{j=0}^{n-1}$.*

A similar argument to the one that led to $|\alpha_n| < 1$ yields

Theorem *All zeros of Φ_n lie in \mathbb{D}."

Proof $\Phi_n(z_0) = 0 \Rightarrow \Phi_n = (z - z_0)p, \deg p = n - 1$

$zp = \Phi_n + z_0p$ and $p \perp \Phi_n \Rightarrow \|p\|^2 = \|\Phi_n\|^2 + |z_0|^2\|p\|^2$
Szegő recursion and Verblunsky coefficients

We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) *If two measures have the same Φ_n, they have the same* $\{\Phi_j\}_{j=0}^{n-1}$ *and* $\{\alpha_j\}_{j=0}^{n-1}$.

A similar argument to the one that led to $|\alpha_n| < 1$ yields

Theorem *All zeros of* Φ_n *lie in* \mathbb{D}.

Proof $\Phi_n(z_0) = 0 \Rightarrow \Phi_n = (z - z_0)p$, $\deg p = n - 1$

$zp = \Phi_n + z_0p$ *and* $p \perp \Phi_n \Rightarrow \|p\|^2 = \|\Phi_n\|^2 + |z_0|^2\|p\|^2$

$\Rightarrow |z_0| < 1$
We see that Φ_{n+1} determines α_n, so by induction and inverse recursion,

Theorem (Geronimus-Wendroff Theorem) *If two measures have the same Φ_n, they have the same $\{\Phi_j\}_{j=0}^{n-1}$ and $\{\alpha_j\}_{j=0}^{n-1}$.

A similar argument to the one that led to $|\alpha_n| < 1$ yields

Theorem *All zeros of Φ_n lie in \mathbb{D}.*

Proof $\Phi_n(z_0) = 0 \Rightarrow \Phi_n = (z - z_0)p$, deg $p = n - 1$

$zp = \Phi_n + z_0 p$ and $p \perp \Phi_n \Rightarrow \|p\|^2 = \|\Phi_n\|^2 + |z_0|^2\|p\|^2$

$\Rightarrow |z_0| < 1$

Corollary. *All zeros of $\Phi_n^*(z)$ lie in $\mathbb{C} \setminus \overline{\mathbb{D}}$.***
Here is a second proof that only uses Szegő recursion.
Here is a second proof that only uses Szegő recursion. By induction, suppose that all zeros of Φ_n are in D. Then, for $|\beta| < 1$

$$z\Phi_n + \beta\Phi_n^* \neq 0 \text{ on } \partial D$$

since $|z\Phi_n(z)| = |\Phi_n^*(z)| \text{ on } \partial D$. ($\frac{1}{z} = z$)
Here is a second proof that only uses Szegő recursion. By induction, suppose that all zeros of Φ_n are in \mathbb{D}. Then, for $|\beta| < 1$

$$z\Phi_n + \beta\Phi_n^* \neq 0 \text{ on } \partial \mathbb{D}$$

since $|z\Phi_n(z)| = |\Phi_n^*(z)|$ on $\partial \mathbb{D}$. ($\frac{1}{\bar{z}} = z$)

If $\Phi_{n+1}^{(\beta)} = z\Phi_n + \beta\Phi_n^*$, then at $\beta = 0$, all zeros of $\Phi_{n+1}^{(\beta)}$ are in \mathbb{D}.
Here is a second proof that only uses Szegő recursion. By induction, suppose that all zeros of Φ_n are in \mathbb{D}. Then, for $|\beta| < 1$

$$z\Phi_n + \beta \Phi_n^* \neq 0 \text{ on } \partial \mathbb{D}$$

since $|z\Phi_n(z)| = |\Phi_n^*(z)|$ on $\partial \mathbb{D}$. \((\frac{1}{\bar{z}} = z)\)

If $\Phi_n^{(\beta)} = z\Phi_n + \beta \Phi_n^*$, then at $\beta = 0$, all zeros of $\Phi_n^{(\beta)}$ are in \mathbb{D}.

As β varies in \mathbb{D}, all zeros of $\Phi_n^{(\beta)}$ are trapped in \mathbb{D}. QED.
Bernstein–Szegő Approximation

We are heading towards a proof that any }\{\alpha_n\}_{n=0}^{\infty} \subset \mathbb{D} are the Verblunsky coefficients of a measure on }\partial\mathbb{D} (analog of Favard’s Theorem). It will depend on
We are heading towards a proof that any \(\{\alpha_n\}_{n=0}^{\infty} \subset \mathbb{D} \) are the Verblunsky coefficients of a measure on \(\partial \mathbb{D} \) (analog of Favard’s Theorem). It will depend on

Theorem (Bernstein–Szegő measures) Let \(\{\alpha_j^{(0)}\}_{j=0}^{n-1} \in \mathbb{D}^n \). Let \(\varphi_n(z) \) be the normalized degree \(n \) polynomial obtained by Szegő recursion. Let

\[
\frac{d\mu_n(\theta)}{d\theta} = \frac{d\theta}{2\pi |\varphi_n(e^{i\theta})|^2}
\]
We are heading towards a proof that any \(\{\alpha_n\}_{n=0}^{\infty} \subset \mathbb{D} \) are the Verblunsky coefficients of a measure on \(\partial \mathbb{D} \) (analog of Favard’s Theorem). It will depend on

Theorem (Bernstein–Szegő measures) Let \(\{\alpha_j^{(0)}\}_{j=0}^{n-1} \in \mathbb{D}^n \). Let \(\varphi_n(z) \) be the normalized degree \(n \) polynomial obtained by Szegő recursion. Let

\[
d\mu_n(\theta) = \frac{d\theta}{2\pi|\varphi_n(e^{i\theta})|^2}
\]

Then \(d\mu_n \) has Verblunsky coefficients

\[
\alpha_j(d\mu_n) = \begin{cases}
\alpha_j^{(0)} & j = 0, \ldots, n - 1 \\
0 & j \geq n
\end{cases}
\]
The first step of the proof is to show that

\[k, \ell, n \text{ with } k < n + \ell \Rightarrow \int_{z=e^{i\theta}} \bar{z}^k z^\ell \varphi_n(z) d\mu_n(\theta) = 0 \]
The first step of the proof is to show that

\[k, \ell, n \text{ with } k < n + \ell \Rightarrow \int_{z=e^{i\theta}} \bar{z}^k z^{\ell} \varphi_n(z) d\mu_n(\theta) = 0 \]

For \(z \in \partial \mathbb{D} \Rightarrow \varphi_n(z) = \varphi_n\left(\frac{1}{\bar{z}}\right) = z^{-n} \varphi^*_n(z) \).
Bernstein–Szegő Approximation

The first step of the proof is to show that

\[k, \ell, n \text{ with } k < n + \ell \Rightarrow \int_{z = e^{i\theta}} \overline{z}^k z^\ell \phi_n(z) d\mu_n(\theta) = 0 \]

For \(z \in \partial \mathbb{D} \Rightarrow \overline{\phi_n(z)} = \overline{\phi_n\left(\frac{1}{\overline{z}}\right)} = z^{-n} \phi_n^*(z) \).

Thus the integral above is

\[\oint \frac{\overline{z}^k z^\ell \phi_n(z)}{z^{-n} \phi_n(z) \phi_n^*(z)} \frac{dz}{2\pi i z} = \frac{1}{2\pi} \oint z^{\ell+n-k-1} \frac{dz}{\phi_n^*(z)} \]
The first step of the proof is to show that

\[k, \ell, n \text{ with } k < n + \ell \Rightarrow \int_{z=e^{i\theta}} \bar{z}^k z^\ell \varphi_n(z) d\mu_n(\theta) = 0 \]

For \(z \in \partial\mathbb{D} \Rightarrow \varphi_n(z) = \varphi_n\left(\frac{1}{\bar{z}}\right) = z^{-n} \varphi_n^*(z) \).

Thus the integral above is

\[\oint \frac{\bar{z}^k z^\ell \varphi_n(z)}{z^{-n} \varphi_n(z) \varphi_n^*(z)} \frac{dz}{2\pi i z} = \frac{1}{2\pi} \oint z^{\ell+n-k-1} \frac{dz}{\varphi_n^*(z)} \]

is zero since \([\varphi_n^*(z)]^{-1}\) is analytic on a neighborhood of \(\overline{\mathbb{D}}\) and \(\ell + n - k - 1 \geq 0\).
Thus, \(z^l \varphi_n \) is a multiple of the OP’s for \(d\mu_n \).
Thus, $z^\ell \varphi_n$ is a multiple of the OP’s for $d\mu_n$.

Since $\int |z^\ell \varphi_n|^2 d\mu = 1$, we see that

$$\varphi_{n+k}(z; d\mu) = z^k \varphi_n(z); \quad k > 0.$$
Thus, $z^\ell \varphi_n$ is a multiple of the OP’s for $d\mu_n$.

Since $\int |z^\ell \varphi_n|^2 \, d\mu = 1$, we see that

$$\varphi_{n+k}(z; d\mu) = z^k \varphi_n(z); \quad k > 0.$$

As we saw, Φ_n determines $\{\alpha_j\}_{j=0}^{n-1}$ and Φ_j by inverse Szegő recursion and $-\Phi_{j+1}(0) = \alpha_j$.
Thus, $z^\ell \varphi_n$ is a multiple of the OP’s for $d\mu_n$.

Since $\int |z^\ell \varphi_n|^2 d\mu = 1$, we see that

$$\varphi_{n+k}(z; d\mu) = z^k \varphi_n(z); \ k > 0.$$

As we saw, Φ_n determines $\{\alpha_j\}_{j=0}^{n-1}$ and Φ_j by inverse Szegő recursion and $-\Phi_{j+1}(0) = \alpha_j$. This shows that

$$\varphi_j(z; d\mu) = \begin{cases}
\varphi_j(x) & j = 0, \ldots, n \\
z^{j-n} \varphi_n(z) & j = n, n + 1, \ldots
\end{cases}$$

implying the claimed result.
Bernstein–Szegő Approximation

Given \(\{\alpha_j\}_{j=0}^\infty \subset \mathbb{D}^\infty \), we can form \(d\mu_n \) as above. Via
\[
\int \Phi_j(e^{i\theta})d\mu(e^{i\theta}) = 0,
\]
\(\{\Phi_j\}_{j=0}^n \) determines \(\{\int z^j d\mu\}_{j=0}^n \) inductively (actually they determine more moments).
Given \(\{ \alpha_j \}_{j=0}^{\infty} \subset \mathbb{D}^{\infty} \), we can form \(d\mu_n \) as above. Via
\[
\int \Phi_j(e^{i\theta})d\mu(e^{i\theta}) = 0,
\]
\(\{ \Phi_j \}_{j=0}^{n} \) determines \(\{ \int z^j d\mu \}_{j=0}^{n} \) inductively (actually they determine more moments). Thus
\[
\int z^j d\mu_n = \int z^j d\mu_m \quad j \leq \min(n, m)
\]
and
\[
\int \overline{z}^j d\mu_n = \overline{\left(\int z^j d\mu_n \right)}.
\]
Bernstein–Szegő Approximation

Given \(\{\alpha_j\}_{j=0}^{\infty} \subset \mathbb{D}^{\infty} \), we can form \(d\mu_n \) as above. Via
\[
\int \Phi_j(e^{i\theta})d\mu(e^{i\theta}) = 0, \quad \{\Phi_j\}_{j=0}^{n} \text{ determines } \{\int z^j d\mu\}_{j=0}^{n}
\]
determines \(\{\int z^j d\mu\}_{j=0}^{n} \) inductively (actually they determine more moments). Thus
\[
\int z^j d\mu_n = \int z^j d\mu_m \quad j \leq \min(n, m)
\]
and
\[
\int z^j d\mu_n = \left(\int z^j d\mu_n \right).
\]
Thus, \(d\mu_n \) has a weak limit \(d\mu_\infty \). Clearly, \(\alpha_j(d\mu_\infty) = \alpha_j \).
Bernstein–Szegő Approximation

Given \(\{\alpha_j\}_{j=0}^{\infty} \subset \mathbb{D}^\infty \), we can form \(d\mu_n \) as above. Via
\[
\int \Phi_j(e^{i\theta})d\mu(e^{i\theta}) = 0, \quad \{\Phi_j\}_{j=0}^{n}
\]
determines \(\{\int z^j d\mu\}_{j=0}^{n} \) inductively (actually they determine more moments). Thus
\[
\int z^j d\mu_n = \int z^j d\mu_m \quad j \leq \min(n, m)
\]
and
\[
\int \overline{z^j} d\mu_n = (\int z^j d\mu_n).
\]
Thus, \(d\mu_n \) has a weak limit \(d\mu_\infty \). Clearly, \(\alpha_j(d\mu_\infty) = \alpha_j \).

We have thus proven

Verblunsky’s Theorem. \(\mu \rightarrow \{\alpha_j(\mu)\}_{j=0}^{\infty} \) sets up a 1–1 correspondence between non-trivial probability measures on \(\partial \mathbb{D} \) and \(\mathbb{D}^\infty \).
While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different.
CMV Matrices

While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by x has a matrix form written in terms of Jacobi parameters.
While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by x has a matrix form written in terms of Jacobi parameters for which we could apply the spectral theorem.
While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by x has a matrix form written in terms of Jacobi parameters for which we could apply the spectral theorem. The Jacobi matrix form depended on the fact that $\{p_n\}_{n=0}^{\infty}$ is an orthonormal basis for $L^2(\mathbb{R}, d\mu)$ (at least in the bounded support case).
CMV Matrices

While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by x has a matrix form written in terms of Jacobi parameters for which we could apply the spectral theorem. The Jacobi matrix form depended on the fact that $\{p_n\}_{n=0}^{\infty}$ is an orthonormal basis for $L^2(\mathbb{R}, d\mu)$ (at least in the bounded support case). As we’ve seen, for OPUC, $\{\varphi_n\}_{n=0}^{\infty}$ may not be complete, and even if it is, the matrix is complicated (not finite diagonal).
While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by x has a matrix form written in terms of Jacobi parameters for which we could apply the spectral theorem. The Jacobi matrix form depended on the fact that $\{p_n\}_{n=0}^{\infty}$ is an orthonormal basis for $L^2(\mathbb{R}, d\mu)$ (at least in the bounded support case). As we’ve seen, for OPUC, $\{\varphi_n\}_{n=0}^{\infty}$ may not be complete, and even if it is, the matrix is complicated (not finite diagonal).

In 2001, Cantero, Moral and Velázquez had the lovely idea of orthonormalizing $\{1, z, z^{-1}, z^2, z^{-2}, \ldots\}$ which always produces a complete set.
CMV Matrices

While Verblunsky’s Theorem is an analog of Favard’s theorem, the proofs we’ve given are very different. The Favard theorem proof relied on the fact that for OPRL, multiplication by \(x \) has a matrix form written in terms of Jacobi parameters for which we could apply the spectral theorem. The Jacobi matrix form depended on the fact that \(\{ p_n \}_{n=0}^{\infty} \) is an orthonormal basis for \(L^2(\mathbb{R}, d\mu) \) (at least in the bounded support case). As we’ve seen, for OPUC, \(\{ \varphi_n \}_{n=0}^{\infty} \) may not be complete, and even if it is, the matrix is complicated (not finite diagonal).

In 2001, Cantero, Moral and Velázquez had the lovely idea of orthonormalizing \(\{ 1, z, z^{-1}, z^2, z^{-2}, \ldots \} \) which always produces a complete set. Remarkably, they found that this ON basis can be expressed in terms of suitable \(z^\ell \varphi_k \) and \(z^\ell \varphi_k^* \).
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements)
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^{\infty}$.
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^{\infty}$. I named this the CMV matrix and the name has stuck.
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^\infty$. I named this the \textit{CMV matrix} and the name has stuck (indeed, “CMV matrix” has almost 500,000 hits in Google).
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^\infty$. I named this the *CMV matrix* and the name has stuck (indeed, “CMV matrix” has almost 500,000 hits in Google). Validating Arnold’s principle, the CMV matrix appeared about 10 years earlier in the numeric matrix literature (work of Ammar, Gragg, Reichel, Bunse-Gerstner, Elsner and Watkins).
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^{\infty}$. I named this the CMV matrix and the name has stuck (indeed, “CMV matrix” has almost 500,000 hits in Google). Validating Arnold’s principle, the CMV matrix appeared about 10 years earlier in the numeric matrix literature (work of Ammar, Gragg, Reichel, Bunse-Gerstner, Elsner and Watkins).

One can use the CMV matrix for a different proof of Verblunsky’s theorem.
In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in \(\{\alpha_j, \rho_j\}_{j=0}^{\infty}\). I named this the CMV matrix and the name has stuck (indeed, “CMV matrix” has almost 500,000 hits in Google). Validating Arnold’s principle, the CMV matrix appeared about 10 years earlier in the numeric matrix literature (work of Ammar, Gragg, Reichel, Bunse-Gerstner, Elsner and Watkins).

One can use the CMV matrix for a different proof of Verblunsky’s theorem. Given \(\{\alpha_j\}_{j=1}^{\infty}\), one can form the CMV matrix which is unitary and apply the spectral theorem to get a spectral measure which one shows has the right Verblunsky coefficients.
CMV Matrices

In terms of this basis, multiplication by z is given by a 5-diagonal matrix (in fact, each row has at most four non-zero elements) whose elements are quadratic in $\{\alpha_j, \rho_j\}_{j=0}^{\infty}$. I named this the *CMV matrix* and the name has stuck (indeed, “CMV matrix” has almost 500,000 hits in Google). Validating Arnold’s principle, the CMV matrix appeared about 10 years earlier in the numeric matrix literature (work of Ammar, Gragg, Reichel, Bunse-Gerstner, Elsner and Watkins).

One can use the CMV matrix for a different proof of Verblunsky’s theorem. Given $\{\alpha_j\}_{j=1}^{\infty}$, one can form the CMV matrix which is unitary and apply the spectral theorem to get a spectral measure which one shows has the right Verblunsky coefficients. Details can be found in [OPUC1].
Simon [CRM Proc. and Lecture Notes 42 (2007), 453–463] has proven an analog of the Bernstein–Szegő approximation for OPRL (the analog for Schrödinger operators is due to Carmona; hence the name):
Simon [CRM Proc. and Lecture Notes 42 (2007), 453–463] has proven an analog of the Bernstein–Szegő approximation for OPRL (the analog for Schrödinger operators is due to Carmona; hence the name):

Let \(d\rho \) be a probability measure on \(\mathbb{R} \) with \(\int |x|^n \, d\rho < \infty \) for all \(n \). Let \(\{p_n\}_{n=0}^{\infty} \) be its orthonormal polynomials and \(\{a_n, b_n\}_{n=1}^{\infty} \) its Jacobi parameters. Let

\[
d\nu_n(x) = dx / \left[\pi (a_n^2 p_n^2(x) + p_{n-1}^2(x)) \right]
\]
Simon [CRM Proc. and Lecture Notes 42 (2007), 453–463] has proven an analog of the Bernstein–Szegő approximation for OPRL (the analog for Schrödinger operators is due to Carmona; hence the name):

Let $d\rho$ be a probability measure on \mathbb{R} with $\int |x|^n d\rho < \infty$ for all n. Let $\{p_n\}_{n=0}^{\infty}$ be its orthonormal polynomials and $\{a_n, b_n\}_{n=1}^{\infty}$ its Jacobi parameters. Let

$$d\nu_n(x) = dx/\left[\pi (a_n^2 p_n^2(x) + p_{n-1}^2(x))\right]$$

Then, for $\ell = 0, \ldots, 2n - 2$, $\int x^\ell \, d\nu_n = \int x^\ell \, d\rho$.
Simon [CRM Proc. and Lecture Notes 42 (2007), 453–463] has proven an analog of the Bernstein–Szegő approximation for OPRL (the analog for Schrödinger operators is due to Carmona; hence the name):

Let $d\rho$ be a probability measure on \mathbb{R} with $\int |x|^n \, d\rho < \infty$ for all n. Let $\{p_n\}_{n=0}^\infty$ be its orthonormal polynomials and $\{a_n, b_n\}_{n=1}^\infty$ its Jacobi parameters. Let

$$d\nu_n(x) = \frac{dx}{\pi (a_n^2 p_n^2(x) + p_{n-1}^2(x))}$$

Then, for $\ell = 0, \ldots, 2n - 2$, $\int x^\ell \, d\nu_n = \int x^\ell \, d\rho$.

If the moment problem for $d\rho$ is determinate, then $d\nu_n \rightarrow d\rho$ weakly.
Simon [CRM Proc. and Lecture Notes 42 (2007), 453–463] has proven an analog of the Bernstein–Szegő approximation for OPRL (the analog for Schrödinger operators is due to Carmona; hence the name):

Let $d\rho$ be a probability measure on \mathbb{R} with $\int |x|^n d\rho < \infty$ for all n. Let $\{p_n\}_{n=0}^{\infty}$ be its orthonormal polynomials and $\{a_n, b_n\}_{n=1}^{\infty}$ its Jacobi parameters. Let

$$d\nu_n(x) = dx / \left[\pi (a_n^2 p_n^2(x) + p_{n-1}^2(x)) \right]$$

Then, for $\ell = 0, \ldots, 2n - 2$, $\int x^\ell d\nu_n = \int x^\ell d\rho$.

If the moment problem for $d\rho$ is determinate, then $d\nu_n \to d\rho$ weakly.

One strange aspect of this formula is that for $\ell > 2n - 1$, the moments of $d\nu_n$ are infinite!
One important consequence of this result is
One important consequence of this result is

Theorem. If $I \subset \mathbb{R}$ is an interval and for all $x \in I$ and some $c > 0$, we have that

$$c \leq a_n^2 p_n^2(x) + p_{n-1}^2(x) \leq c^{-1}$$
One important consequence of this result is

Theorem. If \(I \subset \mathbb{R} \) is an interval and for all \(x \in I \) and some \(c > 0 \), we have that
\[
c \leq a_n^2 p_n^2(x) + p_{n-1}^2(x) \leq c^{-1}
\]
then \(d\rho \upharpoonright I \) has a.c. part and no singular spectrum.
One important consequence of this result is

Theorem. If \(I \subset \mathbb{R} \) is an interval and for all \(x \in I \) and some \(c > 0 \), we have that
\[
c \leq a_n^2 p_n^2(x) + p_{n-1}^2(x) \leq c^{-1}
\]
then \(d\rho \upharpoonright I \) has a.c. part and no singular spectrum.

Similarly, for \(I \subset \partial \mathbb{D} \) and \(\mu \) a probability measure
\[
c \leq |\varphi_n(z)| \leq c^{-1} \quad \text{all } z \in I
\]
implies \(d\mu \upharpoonright I \) has a.c. part and no singular spectrum.
One important consequence of this result is

Theorem. If $I \subset \mathbb{R}$ is an interval and for all $x \in I$ and some $c > 0$, we have that

$$c \leq a_n^2 p_n^2(x) + p_{n-1}^2(x) \leq c^{-1}$$

then $d\rho \upharpoonright I$ has a.c. part and no singular spectrum.

Similarly, for $I \subset \partial \mathbb{D}$ and μ a probability measure

$$c \leq |\varphi_n(z)| \leq c^{-1} \quad \text{all } z \in I$$

implies $d\mu \upharpoonright I$ has a.c. part and no singular spectrum.

Remark. A much stronger result is known (see e.g., Simon [Proc AMS 124 (1996), 3361-3369]); I can be any set and c can be x-dependent.