Spectral Theory of Orthogonal Polynomials

Periodic and Ergodic Spectral Problems

Issac Newton Institute, January, 2015

Barry Simon
IBM Professor of Mathematics and Theoretical Physics
California Institute of Technology
Pasadena, CA, U.S.A.

Lecture 5: Isospectral Tori
Spectral Theory of Orthogonal Polynomials

- Lecture 1: Introduction and Overview
- Lecture 2: Szegő Theorem for OPUC
- Lecture 3: Three Kinds of Polynomial Asymptotics
- Lecture 4: Potential Theory
- Lecture 5: Isospectral Tori
- Lecture 6: Fuchsian Groups
- Lecture 7: Chebyshev Polynomials, I
- Lecture 8: Chebyshev Polynomials, II

We turn next to two sided periodic Jacobi matrices, their isospectral tori and use that as a jump off to the start of finite gap isospectral tori which will involve some almost periodic examples.
We turn next to two sided periodic Jacobi matrices, their isospectral tori and use that as a jump off to the start of finite gap isospectral tori which will involve some almost periodic examples. Since you’ve seen some of these ideas already, I’ll be brief on some of the details.

So \(\{a_n, b_n\}_{n=-\infty}^{\infty} \) are two-sided sequences with some \(p > 0 \) in \(\mathbb{Z} \) so that

\[
a_{n+p} = a_n \quad b_{n+p} = b_n
\]
We turn next to two sided periodic Jacobi matrices, their isospectral tori and use that as a jump off to the start of finite gap isospectral tori which will involve some almost periodic examples. Since you’ve seen some of these ideas already, I’ll be brief on some of the details.

So \(\{a_n, b_n\}_{n=-\infty}^{\infty} \) are two-sided sequences with some \(p > 0 \) in \(\mathbb{Z} \) so that

\[
a_{n+p} = a_n \quad b_{n+p} = b_n
\]

For \(z \in \mathbb{C} \) fixed, we are interested in solutions \(\{u_n\}_{n=0}^{\infty} \) of

\[
a_n u_{n+1} + b_n u_n + a_{n-1} u_{n-1} = zu_n
\]
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}, \theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}$, $\theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation

$$-u'' + Vu = zu, \quad V(x + p) = V(x).$$
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}$, $\theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation

$$-u'' + Vu = zu, \ V(x + p) = V(x).$$

The analysis of such solutions is a delightful amalgam of three tools,
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}$, $\theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation $-u'' + Vu = zu$, $V(x + p) = V(x)$.

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}, \theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation

$$-u'' + Vu = zu, \quad V(x + p) = V(x).$$

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different λ’s for which there is a solution.
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}$, $\theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation

$$-u'' + Vu = zu, \quad V(x + p) = V(x).$$

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different λ’s for which there is a solution. If λ_1, λ_2 are two such λ’s, their Wronskian is non-zero so constancy of the Wronskian implies
that also obey for some $\lambda \in \mathbb{C}$ ($\lambda = e^{i\theta}, \theta \in \mathbb{C}$)

$$u_{n+p} = \lambda u_n$$

Such solutions are called *Floquet solutions* as they are analogs of solutions of ODE, especially Hill’s equation $-u'' + Vu = zu, V(x + p) = V(x)$.

The analysis of such solutions is a delightful amalgam of three tools, the first of which is just the fact that the set of all solutions of the difference equation is two-dimensional.

Thus, there are, for z fixed, at most two different λ's for which there is a solution. If λ_1, λ_2 are two such λ's, their Wronskian is non-zero so constancy of the Wronskian implies $\lambda_1 \lambda_2 = 1$.
The (twisted) periodic boundary condition Jacobi matrix $J_{\text{per}, \lambda}$ is $p \times p$.

Conversely, if \tilde{u} solves this, the unique u with $u_{n+p} = \lambda u_n$ and \tilde{u} is a Floquet solution.
Periodic B.C. Jacobi Matrices

The (twisted) periodic boundary condition Jacobi matrix $J_{\text{per},\lambda}$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:
The (twisted) periodic boundary condition Jacobi matrix $J_{\text{per},\lambda}$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:

$$J_{jj} = b_j, \quad J_{j+1} = a_j, \quad J_{j-1} = a_{j-1}$$
The (twisted) periodic boundary condition Jacobi matrix \(J_{\text{per},\lambda} \) is \(p \times p \). It is the finite Jacobi matrix with \(1p \) and \(p1 \) matrix elements added:

\[
J_{jj} = b_j, \quad J_{j+1} = a_j, \quad J_{j-1} = a_{j-1}
\]

\[
J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda
\]
The (twisted) periodic boundary condition Jacobi matrix $J_{\text{per},\lambda}$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:

$$
J_{jj} = b_j, \quad J_{jj+1} = a_j, \quad J_{j-1j} = a_{j-1}
$$

$$
J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda
$$

If $\{u_n\}_{n=-\infty}^{\infty}$ is a Floquet solution, $u_0 = \lambda^{-1} u_p,$ $u_{p+1} = \lambda u_1$
The (twisted) periodic boundary condition Jacobi matrix $J_{\text{per}, \lambda}$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:

$$J_{j,j} = b_j, \quad J_{j,j+1} = a_j, \quad J_{j,j-1} = a_{j-1}$$

$$J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda$$

If $\{u_n\}_{n=-\infty}^{\infty}$ is a Floquet solution, $u_0 = \lambda^{-1} u_p$, $u_{p+1} = \lambda u_1$ so $\tilde{u} = \{u_n\}_{n=1}^p$ has $J_{\text{per}, \lambda} \tilde{u} = z \tilde{u}$.
The (twisted) periodic boundary condition Jacobi matrix $J^{\text{per}, \lambda}$ is $p \times p$. It is the finite Jacobi matrix with $1p$ and $p1$ matrix elements added:

\[
J_{jj} = b_j, \quad J_{j,j+1} = a_j, \quad J_{j,j-1} = a_{j-1}
\]

\[
J_{1p} = a_p \lambda^{-1}, \quad J_{p1} = a_p \lambda
\]

If $\{u_n\}_{n=-\infty}^{\infty}$ is a Floquet solution, $u_0 = \lambda^{-1} u_p$, $u_{p+1} = \lambda u_1$ so $\tilde{u} = \{u_n\}_{n=1}^{p}$ has $J^{\text{per}, \lambda} \tilde{u} = z \tilde{u}$.

Conversely, if \tilde{u} solves this, the unique u with $u_{n+p} = \lambda u_n$ and $\tilde{u} = \{u_n\}_{n=1}^{\infty}$ is a Floquet solution.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)
- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z’s all real, for which there are Floquet solutions with that λ.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)

- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z’s all real, for which there are Floquet solutions with that λ.

The reality comes from hermicity of $J_{\text{per},\lambda}$.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)

- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z’s all real, for which there are Floquet solutions with that λ.

The reality comes from hermicity of $J_{\text{per},\lambda}$.

If $\lambda \neq \pm 1$, then $\bar{\lambda} \neq \lambda$. If u is a Floquet solution for λ, since z is real, \bar{u} is a Floquet solution for $\bar{\lambda}$ so there is a unique solution for that z.
This implies

- For any λ, there are at most p z’s which have a Floquet solution for that λ. (We’ll see soon that if $\lambda \neq \pm 1$, there are exactly p.)

- If $\lambda = e^{i\theta}$, $\theta \in \mathbb{R}$, $\lambda \neq \pm 1$, there are precisely p distinct z’s all real, for which there are Floquet solutions with that λ.

The reality comes from hermicity of $J_{\text{per}, \lambda}$.

If $\lambda \neq \pm 1$, then $\bar{\lambda} \neq \lambda$. If u is a Floquet solution for λ, since z is real, \bar{u} is a Floquet solution for $\bar{\lambda}$ so there is a unique solution for that z. Thus, for $\lambda \in \partial \mathbb{D} \setminus \{\pm 1\}$, $J_{\text{per}, \lambda}$ has p eigenvalues and each simple.
The third tool concerns the p-step transfer matrix.
The third tool concerns the p-step transfer matrix.

$$T_p(z) \begin{pmatrix} a_1 \\ a_0 \\ u_0 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ a_0 \\ u_0 \end{pmatrix}$$

is equivalent to $\begin{pmatrix} u_1 \\ a_0 \\ u_0 \end{pmatrix}$ generating a Floquet solution!
The Discriminant

The third tool concerns the p-step transfer matrix.

$$T_p(z) \begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$$ is equivalent to $$\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$$ generating a Floquet solution! (Note: a_0 may not be 1.)
The Discriminant

The third tool concerns the p-step transfer matrix. $T_p(z)\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$ is equivalent to $\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$ generating a Floquet solution! (Note: a_0 may not be 1.)

In terms of the OP’s for $\{a_n, b_n\}_{n=1}^{\infty}$,

$$T_p(z) = \begin{pmatrix} p_p(z) & -q_p(z) \\ a_p p_{p-1}(z) & -a_p q_{p-1}(z) \end{pmatrix}$$
The Discriminant

The third tool concerns the p-step transfer matrix.

$$T_p(z) \begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix} = \lambda \begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$$

is equivalent to

$$\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}$$

generating a Floquet solution! (Note: a_0 may not be 1.)

In terms of the OP’s for $\{a_n, b_n\}_{n=1}^{\infty}$,

$$T_p(z) = \begin{pmatrix} p_p(z) & -q_p(z) \\ a_p p_{p-1}(z) & -a_p q_{p-1}(z) \end{pmatrix}$$

The discriminant, $\Delta(z)$, is defined by
The third tool concerns the \(p \)-step transfer matrix.

\[
T_p(z)(\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix}) = \lambda(\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix})
\]

is equivalent to \(\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix} \) generating a Floquet solution! (Note: \(a_0 \) may not be 1.)

In terms of the OP’s for \(\{a_n, b_n\}_{n=1}^\infty \),

\[
T_p(z) = \begin{pmatrix} p_p(z) & -q_p(z) \\ a_pp_{p-1}(z) & -a_pq_{p-1}(z) \end{pmatrix}
\]

The discriminant, \(\Delta(z) \), is defined by

\[
\Delta(z) = \text{Tr}(T_p(z)) = p_p(z) - a_pq_{p-1}(z)
\]

is a (real) polynomial of degree exactly \(p \).
Since $\det(T_p(z)) = 1$, it has algebraic eigenvalues λ and λ^{-1} where
Since $\det(T_p(z)) = 1$, it has algebraic eigenvalues λ and λ^{-1} where

$$\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2 \cos \theta \text{ if } \lambda = e^{i\theta}$$
The Discriminant

Since $\text{det}(T_p(z)) = 1$, it has algebraic eigenvalues λ and λ^{-1} where

$$\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2 \cos \theta \text{ if } \lambda = e^{i\theta}$$

Floquet solutions correspond to geometric eigenvalues for $T_p(z)$. If $\lambda \neq \pm 1$, it has multiplicity one, so is geometric. $\lambda = \pm 1$ has multiplicity 2, so there can be one or two Floquet solutions.
Since $\det(T_p(z)) = 1$, it has algebraic eigenvalues λ and λ^{-1} where

$$\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2\cos \theta \text{ if } \lambda = e^{i\theta}$$

Floquet solutions correspond to geometric eigenvalues for $T_p(z)$. If $\lambda \neq \pm 1$, it has multiplicity one, so is geometric. $\lambda = \pm 1$ has multiplicity 2, so there can be one or two Floquet solutions.

An important consequence of the fact that $\Delta(z) \in (-2, 2)$ implies all z’s are real is
Since $\det(T_p(z)) = 1$, it has algebraic eigenvalues λ and λ^{-1} where

$$\Delta(z) = \lambda + \lambda^{-1}; \quad \Delta(z) = 2 \cos \theta \text{ if } \lambda = e^{i\theta}$$

Floquet solutions correspond to geometric eigenvalues for $T_p(z)$. If $\lambda \neq \pm 1$, it has multiplicity one, so is geometric. $\lambda = \pm 1$ has multiplicity 2, so there can be one or two Floquet solutions.

An important consequence of the fact that $\Delta(z) \in (-2, 2)$ implies all z’s are real is $\Delta^{-1}((-2, 2)) \subset \mathbb{R}$.
The Discriminant

A basic fact of analytic functions is that if \(f(z) \) is real (i.e., \(f(\bar{z}) = \overline{f(z)} \)), \(x_0 \in \mathbb{R} \) with \(f'(x_0) = 0 \), there are non-real \(z \)'s near \(x_0 \) with \(f(z) \) real and near \(f(x_0) \).
A basic fact of analytic functions is that if \(f(z) \) is real (i.e., \(f(\overline{z}) = \overline{f(z)} \)), \(x_0 \in \mathbb{R} \) with \(f'(x_0) = 0 \), there are non-real \(z \)'s near \(x_0 \) with \(f(z) \) real and near \(f(x_0) \).

Thus, \(\Delta^{-1}[-2, 2] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0 \) if \(\Delta(x_0) \in (-2, 2) \).
A basic fact of analytic functions is that if $f(z)$ is real (i.e., $f(\bar{z}) = \overline{f(z)}$), $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$, there are non-real z's near x_0 with $f(z)$ real and near $f(x_0)$.

Thus, $\Delta^{-1}[-2, 2] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0$ if $\Delta(x_0) \in (-2, 2)$.

Thus, $\Delta^{-1}[-2, 2] = (\alpha_1, \beta_1) \cup (\alpha_2, \beta_2) \cup \ldots \cup (\alpha_p, \beta_p)$.
A basic fact of analytic functions is that if \(f(z) \) is real (i.e., \(f(\overline{z}) = \overline{f(z)} \)), \(x_0 \in \mathbb{R} \) with \(f'(x_0) = 0 \), there are non-real \(z \)'s near \(x_0 \) with \(f(z) \) real and near \(f(x_0) \).

Thus, \(\Delta^{-1}[(-2, 2)] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0 \) if \(\Delta(x_0) \in (-2, 2) \).

Thus, \(\Delta^{-1}[(-2, 2)] = (\alpha_1, \beta_1) \cup (\alpha_2, \beta_2) \cup \ldots \cup (\alpha_p, \beta_p) \)

where \(\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \alpha_3 < \ldots < \beta_p \)
A basic fact of analytic functions is that if $f(z)$ is real (i.e., $f(\bar{z}) = \overline{f(z)}$), $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$, there are non-real z’s near x_0 with $f(z)$ real and near $f(x_0)$.

Thus, $\Delta^{-1}[-2, 2] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0$ if $\Delta(x_0) \in (-2, 2)$.

Thus, $\Delta^{-1}[-2, 2] = (\alpha_1, \beta_1) \cup (\alpha_2, \beta_2) \cup \ldots \cup (\alpha_p, \beta_p)$

where $\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \alpha_3 < \ldots < \beta_p$

with Δ a smooth bijection of (α_j, β_j) to $(-2, 2)$.
A basic fact of analytic functions is that if \(f(z) \) is real (i.e., \(f(\bar{z}) = f(z) \)), \(x_0 \in \mathbb{R} \) with \(f'(x_0) = 0 \), there are non-real \(z \)'s near \(x_0 \) with \(f(z) \) real and near \(f(x_0) \).

Thus, \(\Delta^{-1} \left[(-2, 2) \right] \subset \mathbb{R} \Rightarrow \Delta'(x_0) \neq 0 \) if \(\Delta(x_0) \in (-2, 2) \).

Thus, \(\Delta^{-1} \left[(-2, 2) \right] = (\alpha_1, \beta_1) \cup (\alpha_2, \beta_2) \cup \ldots \cup (\alpha_p, \beta_p) \)
where \(\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \alpha_3 < \ldots < \beta_p \)
with \(\Delta \) a smooth bijection of \((\alpha_j, \beta_j) \) to \((-2, 2) \).

Could be orientation reversing or not.
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$, i.e.,
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$, i.e.,

$$
\Delta(\beta_j) = (-1)^{p-j}2, \quad \Delta(\alpha_j) = (-1)^{p-j-1}2
$$
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$, i.e.,

$$\Delta(\beta_j) = (-1)^{p-j}2, \quad \Delta(\alpha_j) = (-1)^{p-j-1}2$$

If the α’s and β’s are all distinct, we have p points where $\Delta(x) = 2$ and p where $\Delta(x) = -2$.
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$, i.e.,

$$\Delta(\beta_j) = (-1)^p - j 2, \quad \Delta(\alpha_j) = (-1)^{p-j-1} 2$$

If the α’s and β’s are all distinct, we have p points where $\Delta(x) = 2$ and p where $\Delta(x) = -2$.

Since $\deg \Delta = p$, these are all the points.
Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2$... i.e.,

$$\Delta(\beta_j) = (-1)^{p-j}2, \quad \Delta(\alpha_j) = (-1)^{p-j-1}2$$

If the α’s and β’s are all distinct, we have p points where $\Delta(x) = 2$ and p where $\Delta(x) = -2$.

Since $\deg \Delta = p$, these are all the points.

If $\beta_{j-1} = \alpha_j$, there is one less point where $\Delta(x) = (-1)^{p-j-1}2$.

...
The Discriminant

Since $\Delta(x) \to \infty$ as $x \to \infty$, we must have $\Delta(\beta_p) = 2$.

It follows that $\Delta(\alpha_p) = -2$, $\Delta(\beta_{p-1}) = -2$, $\Delta(\alpha_{p-1}) = 2 \ldots$, i.e.,

$$\Delta(\beta_j) = (-1)^{p-j}2, \quad \Delta(\alpha_j) = (-1)^{p-j-1}2$$

If the α's and β's are all distinct, we have p points where $\Delta(x) = 2$ and p where $\Delta(x) = -2$.

Since $\deg \Delta = p$, these are all the points.

If $\beta_{j-1} = \alpha_j$, there is one less point where $\Delta(x) = (-1)^{p-j-1}2$, but $\Delta'(\alpha_j) = 0$ since $\Delta - (-1)^{p-j-1}2$ has the same sign on both sides of α_j. It follows that
Open and Closed Gaps

Theorem. \(\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j] \) and

\[\Delta'\left(\beta_j\right) = 0 \iff \beta_j = \alpha_j + 1 \]

and in that case, \(\Delta'' \) is not zero at that point.

The \([\alpha_j, \beta_j] \) are called the bands and \((\beta_j, \alpha_j+1)\) the gaps.

If \(\beta_j < \alpha_j + 1 \), we say that gap \(j \) is open.

If \(\beta_j = \alpha_j + 1 \), we say gap \(j \) is closed.
Theorem. \(\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j] \) and
\[\Delta^{-1}(\{-2, 2\}) = \{\alpha_j, \beta_j\}_{j=1}^{p} \] and

The \([\alpha_j, \beta_j]\) are called the bands and \((\beta_j, \alpha_j + 1)\) the gaps.

If \(\beta_j < \alpha_j + 1\), we say that gap \(j\) is open.

If \(\beta_j = \alpha_j + 1\), we say gap \(j\) is closed.
Open and Closed Gaps

Theorem. $\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p}[\alpha_j, \beta_j]$ and $\Delta^{-1}\{\{-2, 2\}\} = \{\alpha_j, \beta_j\}_{j=1}^{p}$ and

$\Delta'(\alpha_j) = 0 \iff \alpha_j = \beta_{j-1}$, $\Delta'(\beta_j) = 0 \iff \beta_j = \alpha_{j+1}$

and in that case, Δ'' is not zero at that point.
Theorem. \(\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p} \left[\alpha_j, \beta_j \right] \) and
\[\Delta^{-1}(\{-2, 2\}) = \{\alpha_j, \beta_j\}_{j=1}^{p} \] and
\[\Delta'(\alpha_j) = 0 \iff \alpha_j = \beta_{j-1}, \quad \Delta'(\beta_j) = 0 \iff \beta_j = \alpha_{j+1} \]
and in that case, \(\Delta'' \) is not zero at that point.

The \([\alpha_j, \beta_j] \) are called the bands and \((\beta_j, \alpha_{j+1}) \) the gaps.
Open and Closed Gaps

Theorem. \(\Delta^{-1}([-2, 2]) = \bigcup_{j=1}^{p} [\alpha_j, \beta_j] \) and
\[
\Delta^{-1}([-2, 2]) = \{\alpha_j, \beta_j\}_{j=1}^{p}
\] and
\[
\Delta'(\alpha_j) = 0 \iff \alpha_j = \beta_{j-1}, \quad \Delta'(\beta_j) = 0 \iff \beta_j = \alpha_{j+1}
\]
and in that case, \(\Delta'' \) is not zero at that point.

The \([\alpha_j, \beta_j]\) are called the *bands* and \((\beta_j, \alpha_{j+1})\) the *gaps*. If \(\beta_j < \alpha_{j+1}\), we say that gap \(j\) is open.
Theorem. \(\Delta^{-1}([−2, 2]) = \bigcup_{j=1}^{p}[α_j, β_j] \) and
\(\Delta^{-1}(\{−2, 2\}) = \{α_j, β_j\}_{j=1}^{p} \) and
\(\Delta'(α_j) = 0 ⇔ α_j = β_{j-1}, \Delta'(β_j) = 0 ⇔ β_j = α_{j+1} \)

and in that case, \(\Delta'' \) is not zero at that point.

The \([α_j, β_j]\) are called the bands and \((β_j, α_{j+1})\) the gaps.

If \(β_j < α_{j+1}\), we say that gap \(j\) is open.

If \(β_j = α_{j+1}\), we say gap \(j\) is closed.
Further analysis shows at a closed gap (with \(\Delta(\alpha) = 2 \) for simplicity) there are two periodic (Floquet) solutions,
Further analysis shows at a closed gap (with \(\Delta(\alpha) = 2 \) for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution.
Further analysis shows at a closed gap (with $\Delta(\alpha) = 2$ for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution. The transfer matrix has a Jordan anomaly, i.e., $\det = 1$, $\text{Tr} = 2$, but $T \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
Further analysis shows at a closed gap (with $\Delta(\alpha) = 2$ for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution. The transfer matrix has a Jordan anomaly, i.e., $\det = 1$, $\text{Tr} = 2$, but $T \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Each of the gaps where $\Delta(x) \geq 2$ has two periodic solutions—either two at $\beta_j = \alpha_{j+1}$ or one each at β_j and α_{j+1}.
Further analysis shows at a closed gap (with $\Delta(\alpha) = 2$ for simplicity) there are two periodic (Floquet) solutions, while at each of the edges of an open gap there is only one periodic (Floquet) solution. The transfer matrix has a Jordan anomaly, i.e., $\det = 1$, $\text{Tr} = 2$, but $T \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Each of the gaps where $\Delta(x) \geq 2$ has two periodic solutions—either two at $\beta_j = \alpha_{j+1}$ or one each at β_j and α_{j+1} so there are p periodic Floquet solutions, as there must be from the J_{per} analysis.
If \(z \) is such that \(\Delta(z) \not\in [-2, 2] \), then the roots of \(\lambda + \lambda^{-1} = \Delta(z) \) have \(|\lambda| > 1 \), \(|\lambda^{-1}| < 1 \).
If z is such that $\Delta(z) \not\in [-2, 2]$, then the roots of $\lambda + \lambda^{-1} = \Delta(z)$ have $|\lambda| > 1$, $|\lambda^{-1}| < 1$. It follows that there are different solutions u_\pm decaying exponentially at $\pm \infty$ so their Wronskian is not zero.
If z is such that $\Delta(z) \not\in [-2, 2]$, then the roots of $\lambda + \lambda^{-1} = \Delta(z)$ have $|\lambda| > 1$, $|\lambda^{-1}| < 1$. It follows that there are different solutions u_\pm decaying exponentially at $\pm\infty$ so their Wronskian is not zero. By (Schrödinger operator) Green’s function methods,

$$G_{nm}(z) = u^+_{\max(n,m)}(z)u^-_{\min(m,n)}(z)/W(z)$$

is the matrix for $(J - z)^{-1}$, i.e., $z \notin \sigma(J)$.

If \(z \) is such that \(\Delta(z) \notin [-2, 2] \), then the roots of \(\lambda + \lambda^{-1} = \Delta(z) \) have \(|\lambda| > 1, |\lambda^{-1}| < 1 \). It follows that there are different solutions \(u_\pm \) decaying exponentially at \(\pm\infty \) so their Wronskian is not zero. By (Schrödinger operator) Green’s function methods,

\[
G_{nm}(z) = u^+_{\max(n,m)}(z)u^-_{\min(m,n)}(z)/W(z)
\]

is the matrix for \((J - z)^{-1}\), i.e., \(z \notin \sigma(J) \).

If \(\Delta(z) \in [-2, 2] \), there is a bounded Floquet solution (since \(|\lambda| = 1 \)). Then \(\|(J - z)[u\chi_{[-N,N]}]\| \) is bounded,
If \(z \) is such that \(\Delta(z) \notin [-2, 2] \), then the roots of \(\lambda + \lambda^{-1} = \Delta(z) \) have \(|\lambda| > 1, |\lambda^{-1}| < 1 \). It follows that there are different solutions \(u_{\pm} \) decaying exponentially at \(\pm \infty \) so their Wronskian is not zero. By (Schrödinger operator) Green’s function methods,

\[
G_{nm}(z) = u^+_{\max(n,m)}(z)u^-_{\min(m.n)}(z)/W(z)
\]

is the matrix for \((J - z)^{-1}\), i.e., \(z \notin \sigma(J) \).

If \(\Delta(z) \in [-2, 2] \), there is a bounded Floquet solution (since \(|\lambda| = 1 \)). Then \(\| (J - z)[u\chi_{[-N,N]}] \| \) is bounded, but since \(\sum_{j=1}^{p} |u_{m+j}|^2 \) is constant, \(\|u\chi_{[-N,N]}\| \to \infty \) so \(z \in \sigma(J) \). Thus
If z is such that $\Delta(z) \not\in [-2, 2]$, then the roots of $\lambda + \lambda^{-1} = \Delta(z)$ have $|\lambda| > 1$, $|\lambda^{-1}| < 1$. It follows that there are different solutions u_{\pm} decaying exponentially at $\pm\infty$ so their Wronskian is not zero. By (Schrödinger operator) Green’s function methods,

$$G_{nm}(z) = u^+_{\max(n,m)}(z)u^-_{\min(m,n)}(z)/W(z)$$

is the matrix for $(J - z)^{-1}$, i.e., $z \notin \sigma(J)$.

If $\Delta(z) \in [-2, 2]$, there is a bounded Floquet solution (since $|\lambda| = 1$). Then $\|(J - z)[u\chi_{[-N,N]}]\|$ is bounded, but since $\sum_{j=1}^{p}|u_{m+j}|^2$ is constant, $\|u\chi_{[-N,N]}\| \to \infty$ so $z \in \sigma(J)$. Thus

Theorem. $\sigma(J) = \bigcup_{j=1}^{p}[\alpha_j, \beta_j]$.
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm\infty$
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below.
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum.
If \(\Delta(z) \in (-2, 2) \), we get that all solutions are bounded at \(\pm \infty \) and then by a Wronskian argument, \(|u_n|^2 + |u_{n+1}|^2 \) is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line!
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line!

Here is a replacement: Away from the bands, $G_{nn} = u_+^n u_-^n / W$ as we’ve seen.
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm\infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line!

Here is a replacement: Away from the bands, $G_{nn} = u_n^+ u_n^- / W$ as we’ve seen. By continuity of eigenfunctions of transfer matrix in z, u_n^\pm has a limit at $z = x + i\varepsilon$ with $\varepsilon \downarrow 0$ which are Floquet solutions.
If $\Delta(z) \in (-2, 2)$, we get that all solutions are bounded at $\pm \infty$ and then by a Wronskian argument, $|u_n|^2 + |u_{n+1}|^2$ is bounded from below. So by a Carmona-type formula, one should expect purely a.c. spectrum. But this is whole line, not half line!

Here is a replacement: Away from the bands, $G_{nn} = u_n^+ u_n^- / W$ as we’ve seen. By continuity of eigenfunctions of transfer matrix in z, u_n^\pm has a limit at $z = x + i\varepsilon$ with $\varepsilon \downarrow 0$ which are Floquet solutions. This is true at least at interiors of bands where the transfer matrix has distinct eigenvalues.
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i\theta}$).
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i\theta}$). Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

The continuity implies $d\mu(n)$ is purely a.c., so we have proven Theorem. A periodic two-sided Jacobi matrix has purely absolutely continuous spectrum. One can write out an explicit spectral representation with Floquet solutions with $z \in (\alpha_j, \beta_j)$ as continuum eigenfunctions.
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i\theta}$). Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

But if $\mu^{(n)}$ is the spectral measure of δ_n:

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x - z}$$
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i\theta}$). Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}^p_{j=1}$.

But if $\mu^{(n)}$ is the spectral measure of δ_n:

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x - z}$$

The continuity implies $d\mu^{(n)}$ is purely a.c., so we have proven
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i\theta}$). Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

But if $\mu^{(n)}$ is the spectral measure of δ_n:

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x - z}$$

The continuity implies $d\mu^{(n)}$ is purely a.c., so we have proven

Theorem. A periodic two-sided Jacobi matrix has purely absolutely continuous spectrum.
W is non-vanishing on each (α_j, β_j) since u^+ and u^- are distinct Floquet solutions ($e^{\pm i \theta}$). Thus, $G_{nn}(z)$ is continuous from \mathbb{C}_+ to $\mathbb{C}_+ \cup \mathbb{R} \setminus \{\alpha_j, \beta_j\}_{j=1}^p$.

But if $\mu^{(n)}$ is the spectral measure of δ_n:

$$G_{nn}(z) = \int \frac{d\mu^{(n)}(x)}{x - z}$$

The continuity implies $d\mu^{(n)}$ is purely a.c., so we have proven

Theorem. A periodic two-sided Jacobi matrix has purely absolutely continuous spectrum.

One can write out an explicit spectral representation with Floquet solutions with $z \in (\alpha_j, \beta_j)$ as continuum eigenfunctions.
We start with a puzzle. Δ determines

$\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots$ as the roots of $\Delta^2 - 4$.
Potential Theory

We start with a puzzle. \(\Delta \) determines
\[\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots \] as the roots of \(\Delta^2 - 4 \).
Conversely, given \(\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots \), \(\Delta - 2 \) is determined
up to a constant since we know its zeros.
We start with a puzzle. Δ determines $\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots$ as the roots of $\Delta^2 - 4$.

Conversely, given $\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots$, $\Delta - 2$ is determined up to a constant since we know its zeros.

That constant is determined by α_p when Δ is -2. Thus, $\beta_p, \alpha_{p-1}, \beta_{p-2}$ plus α_p determine the remaining $p - 1$ α's and β's.
We start with a puzzle. Δ determines $\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots$ as the roots of $\Delta^2 - 4$.

Conversely, given $\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots$, $\Delta - 2$ is determined up to a constant since we know its zeros.

That constant is determined by α_p when Δ is -2. Thus, $\beta_p, \alpha_{p-1}, \beta_{p-2}$ plus α_p determine the remaining $p - 1$ α’s and β’s. Why this rigidity? Why can’t we have $2p$ arbitrary α’s and β’s?
We start with a puzzle. Δ determines
$\alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \ldots$ as the roots of $\Delta^2 - 4$.
Conversely, given $\beta_p, \alpha_{p-1}, \beta_{p-2}, \ldots$, $\Delta - 2$ is determined up to a constant since we know its zeros.

That constant is determined by α_p when Δ is -2. Thus, $\beta_p, \alpha_{p-1}, \beta_{p-2}$ plus α_p determine the remaining $p - 1$ α’s and β’s. Why this rigidity? Why can’t we have $2p$ arbitrary α’s and β’s?

The answer will lie in potential theory.
For any \(z \in \mathbb{C} \), there are two Floquet indices, \(\lambda_\pm \), solving
\[
\lambda + \lambda^{-1} = \Delta(z).
\]
For any $z \in \mathbb{C}$, there are two Floquet indices, λ_{\pm}, solving $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \geq 1$, we see that

$$
\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log ||T_n(\lambda)|| = \frac{1}{p} \log |\lambda_+(z)|
$$
For any \(z \in \mathbb{C} \), there are two Floquet indices, \(\lambda_\pm \), solving \(\lambda + \lambda^{-1} = \Delta(z) \). If \(|\lambda_+| \geq 1 \), we see that

\[
\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log \|T_n(\lambda)\| = \frac{1}{p} \log |\lambda_+(z)|
\]

Solving the quadratic equation for \(\lambda \)

\[
\gamma(z) = \frac{1}{p} \left[\log \left| \frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2}\right)^2 - 1} \right| \right]
\]
For any $z \in \mathbb{C}$, there are two Floquet indices, λ_{\pm}, solving $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \geq 1$, we see that

$$
\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log \|T_n(\lambda)\| = \frac{1}{p} \log |\lambda_+(z)|
$$

Solving the quadratic equation for λ

$$
\gamma(z) = \frac{1}{p} \left[\log \left| \frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2}\right)^2 - 1} \right| \right]
$$

On $\mathcal{E} = \bigcup_{j=1}^{p} [\alpha_j, \beta_j]$, $|\ldots| = 1$, so $\gamma(z) \geq 0$, $\gamma(z) = 0$ on \mathcal{E}.

For any $z \in \mathbb{C}$, there are two Floquet indices, λ_{\pm}, solving $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \geq 1$, we see that

$$
\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log \|T_n(\lambda)\| = \frac{1}{p} \log |\lambda_+(z)|
$$

Solving the quadratic equation for λ

$$
\gamma(z) = \frac{1}{p} \left[\log \left(\frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2} \right)^2 - 1} \right) \right]
$$

On $\epsilon = \bigcup_{j=1}^{p} [\alpha_j, \beta_j]$, $\ldots| = 1$, so $\gamma(z) \geq 0$,

$\gamma(z) = 0$ on ϵ. $\gamma(z)$ is harmonic on $\mathbb{C} \setminus \epsilon$

since $\frac{\Delta}{2} + \sqrt{\left(\frac{\Delta}{2} \right)^2 - 1}$ is analytic and non-vanishing there
For any $z \in \mathbb{C}$, there are two Floquet indices, λ_{\pm}, solving $\lambda + \lambda^{-1} = \Delta(z)$. If $|\lambda_+| \geq 1$, we see that

$$
\gamma(z) = \lim_{n \to \infty} \frac{1}{n} \log \|T_n(\lambda)\| = \frac{1}{p} \log |\lambda_+(z)|
$$

Solving the quadratic equation for λ

$$
\gamma(z) = \frac{1}{p} \left[\log \left| \frac{\Delta(z)}{2} + \sqrt{\left(\frac{\Delta(z)}{2} \right)^2 - 1} \right| \right]
$$

On $\epsilon = \bigcup_{j=1}^{p} [\alpha_j, \beta_j]$, $|\ldots| = 1$, so $\gamma(z) \geq 0$,

$\gamma(z) = 0$ on ϵ. $\gamma(z)$ is harmonic on $\mathbb{C} \setminus \epsilon$

since $\frac{\Delta}{2} + \sqrt{\left(\frac{\Delta}{2} \right)^2 - 1}$ is analytic and non-vanishing there

and $\gamma(z) = \log (|z|) + O(1)$ at ∞, since $\Delta(z)$ is a degree p polynomial.
Thus $\gamma(z) = G_\varepsilon(z)$ is the potential theorists’ Green’s function. Therefore, as we saw in Lecture 4,
Thus $\gamma(z) = G_\varepsilon(z)$ is the potential theorists’ Green’s function. Therefore, as we saw in Lecture 4,

Theorem. $\gamma(z)$ as given above is the potential theorists’ Green’s function and periodic Jacobi parameters are associated to regular measures (in the Stahl–Totik sense).

Corollary. $C(\varepsilon) = (a_1 \cdots a_p)^{1/p}$
Thus $\gamma(z) = G_\epsilon(z)$ is the potential theorists’ Green’s function. Therefore, as we saw in Lecture 4,

Theorem. $\gamma(z)$ as given above is the potential theorists’ Green’s function and periodic Jacobi parameters are associated to regular measures (in the Stahl–Totik sense).

Corollary. $C(\epsilon) = (a_1 \cdots a_p)^{1/p}$

By general principles, if G_ϵ is smooth up to ϵ on ϵ^{int}, the equilibrium measure $d\rho_\epsilon(x) = f_\epsilon(x)\,dx$ where

$$f_\epsilon(x) = \frac{1}{\pi} \frac{\partial}{\partial y} G_\epsilon(x + iy) \big|_{y=0}$$
Thus \(\gamma(z) = G_\epsilon(z) \) is the potential theorists’ Green’s function. Therefore, as we saw in Lecture 4,

Theorem. \(\gamma(z) \) as given above is the potential theorists’ Green’s function and periodic Jacobi parameters are associated to regular measures (in the Stahl–Totik sense).

Corollary. \(C(\epsilon) = (a_1 \cdots a_p)^{1/p} \)

By general principles, if \(G_\epsilon \) is smooth up to \(\epsilon \) on \(\epsilon^{\text{int}} \), the equilibrium measure \(d\rho_\epsilon(x) = f_\epsilon(x)dx \) where

\[
f_\epsilon(x) = \frac{1}{\pi} \frac{\partial}{\partial y} G_\epsilon(x + iy) \big|_{y=0}
\]

Thus, the equilibrium measure is

\[
f_\epsilon(z) = \frac{1}{p\pi} \frac{|\Delta'(x)|}{\sqrt{4 - \Delta^2(x)}} = \frac{1}{p\pi} \left| \frac{d}{dx} \arccos\left(\frac{\Delta(x)}{2}\right) \right|
\]
In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos(\frac{\Delta}{2})$ from π to 0. Thus,
In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos(\frac{\Delta}{2})$ from π to 0. Thus,

Theorem. $\rho_e([\alpha_j, \beta_j]) = \frac{1}{p}$.
In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos\left(\frac{\Delta}{2}\right)$ from π to 0. Thus,

Theorem. $\rho_e([\alpha_j, \beta_j]) = \frac{1}{p}$.

This explains the puzzle mentioned earlier.
Potential Theory

In each, band \(\Delta(\lambda) \) goes from \(-2\) to \(2\), so \(\arccos\left(\frac{\Delta}{2}\right) \) from \(\pi\) to \(0\). Thus,

Theorem. \(\rho_e([\alpha_j, \beta_j]) = \frac{1}{p} \).

This explains the puzzle mentioned earlier.

This is also a density of zeros way of understanding why the above \(f_e \) is the DOS.
In each, band $\Delta(\lambda)$ goes from -2 to 2, so $\arccos(\frac{\Delta}{2})$ from π to 0. Thus,

Theorem. $\rho_{\epsilon}(\alpha_j, \beta_j) = \frac{1}{p}$.

This explains the puzzle mentioned earlier.

This is also a density of zeros way of understanding why the above f_{ϵ} is the DOS. For the periodic eigenfunctions with a box of size kp are the Floquet solutions with $\lambda = e^{2\pi ij/k}$, $j = 0, 1, 2, \ldots, k - 1$.
Weyl Solutions

An important property of second kind OPRL, sometimes used as the definition is that for \(n \geq 0 \),

\[
q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} d\mu(y)
\]
An important property of second kind OPRL, sometimes used as the definition is that for \(n \geq 0 \),

\[
q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} \, d\mu(y)
\]

which one can prove by checking it solves the right difference equation with \(q_{-1} = -1 \).
An important property of second kind OPRL, sometimes used as the definition is that for \(n \geq 0 \),

\[
q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} \, d\mu(y)
\]

which one can prove by checking it solves the right difference equation with \(q_{-1} = -1 \). One defines

\[
m_\mu(z) = \int \frac{d\mu(x)}{x - z}
\]

\[
\omega_n(x) \equiv \langle p_n, (\bullet - z)^{-1} \rangle = q_n(x) + m(x)p_n(x)
\]

the Weyl solution.
An important property of second kind OPRL, sometimes used as the definition is that for $n \geq 0$,

$$q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} d\mu(y)$$

which one can prove by checking it solves the right difference equation with $q_{-1} = -1$. One defines

$$m_\mu(z) = \int \frac{d\mu(x)}{x - z}$$

$$w_n(x) \equiv <p_n, (\bullet - z)^{-1}> = q_n(x) + m(x)p_n(x)$$

the Weyl solution. Since $(\bullet - z)^{-1}$ is in $L^2(\mathbb{R}, d\mu)$ for $z \notin \text{supp}(d\mu)$,
An important property of second kind OPRL, sometimes used as the definition is that for \(n \geq 0 \),

\[
q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} \, d\mu(y)
\]

which one can prove by checking it solves the right difference equation with \(q_{-1} = -1 \). One defines

\[
m_\mu(z) = \int \frac{d\mu(x)}{x - z}
\]

\[
w_n(x) \equiv < p_n, (\bullet - z)^{-1} >= q_n(x) + m(x)p_n(x)
\]

the Weyl solution. Since \((\bullet - z)^{-1} \) is in \(L^2(\mathbb{R}, d\mu) \) for \(z \notin \text{supp}(d\mu) \), \(w_n \in \ell^2 \) for such \(z \).
Weyl Solutions

An important property of second kind OPRL, sometimes used as the definition is that for $n \geq 0$,

$$q_n(x) = \int \frac{p_n(x) - p_n(y)}{x - y} d\mu(y)$$

which one can prove by checking it solves the right difference equation with $q_{-1} = -1$. One defines

$$m_\mu(z) = \int \frac{d\mu(x)}{x - z}$$

$$w_n(x) \equiv <p_n, (\bullet - z)^{-1}> = q_n(x) + m(x)p_n(x)$$

the Weyl solution. Since $(\bullet - z)^{-1}$ is in $L^2(\mathbb{R}, d\mu)$ for $z \notin \text{supp}(d\mu)$, $w_n \in \ell^2$ for such z.

If $\inf a_n > 0$, constancy of the Wronskian shows this is the unique ℓ^2-solution.
In terms of initial data for \((u_1, a_0, u_0) \), the Weyl solution has initial data \((m(z), -1) \).
In terms of initial data for \((\frac{u_1}{a_0 u_0}) \), the Weyl solution has initial data \((m(z)) \). Thus if \(m_1 \) is the m-function for \(\{a_{n+1}, b_{n+1}\}_{n=1}^{\infty} \), we have that, for a constant, \(c(z) \),

\[
\frac{m(z) - 1}{m_1(z) - 1} = c(z)
\]
In terms of initial data for \(\begin{pmatrix} u_1 \\ a_0 u_0 \end{pmatrix} \), the Weyl solution has initial data \(\begin{pmatrix} m(z) \\ -1 \end{pmatrix} \). Thus if \(m_1 \) is the m-function for \(\{a_{n+1}, b_{n+1}\}_{n=1}^{\infty} \), we have that, for a constant, \(c(z) \),

\[
\begin{pmatrix} z - b_1 & -1 \\ a_1^2 & 0 \end{pmatrix} \begin{pmatrix} m(z) \\ -1 \end{pmatrix} = c(z) \begin{pmatrix} m_1(z) \\ -1 \end{pmatrix}
\]
In terms of initial data for \((u_1 \ a_0u_0) \), the Weyl solution has initial data \((m(z))\). Thus if \(m_1\) is the m-function for \(\{a_{n+1}, b_{n+1}\}_{n=1}^{\infty}\), we have that, for a constant, \(c(z)\),

\[
\begin{pmatrix}
 z - b_1 & -1 \\
 a_1^2 & 0
\end{pmatrix}
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix} = c(z)
\begin{pmatrix}
 m_1(z) \\
 -1
\end{pmatrix}
\]

which leads to the recursion relation:

\[
m(z) = \frac{1}{b_1 - z - a_1^2 m_1(z)}
\]
In terms of initial data for \((\frac{u_1}{a_0 u_0})\), the Weyl solution has initial data \((m(z))\). Thus if \(m_1\) is the m-function for \(\{a_{n+1}, b_{n+1}\}_{n=1}^{\infty}\), we have that, for a constant, \(c(z)\),

\[
\begin{pmatrix}
z - b_1 & -1 \\
a_1^2 & 0
\end{pmatrix}
\begin{pmatrix}
m(z) \\ -1
\end{pmatrix}
= c(z)
\begin{pmatrix}
m_1(z) \\ -1
\end{pmatrix}
\]

which leads to the recursion relation:

\[
m(z) = \frac{1}{b_1 - z - a_1^2 m_1(z)}
\]

which upon iterations yields the continued fraction of Jacobi, Markov and Stieltjes:

\[
m(z) = \frac{1}{b_1 - z - \frac{a_1^2}{b_2 - z - \frac{a_2^2}{b_3 - z - \ldots}}}
\]
In the period p case, stripping p times leave J invariant.
In the period p case, stripping p times leave J invariant so m must obey:

$$
\begin{pmatrix}
 p_p(z) & -q_p(z) \\
 a_p p_{p-1}(z) & -a_p q_{p-1}(z)
\end{pmatrix}
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
=
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
$$

This is reminiscent of the results of Legendre and Galois on numeric continued fractions.
In the period p case, stripping p times leave J invariant so m must obey:

$$\begin{pmatrix} p_p(z) & -q_p(z) \\ a_pp_{p-1}(z) & -a_pq_{p-1}(z) \end{pmatrix}\begin{pmatrix} m(z) \\ -1 \end{pmatrix} = \begin{pmatrix} m(z) \\ -1 \end{pmatrix}$$

which leads to the quadratic equation

$$\alpha(z)m(z)^2 + \beta(z)m(z) + \gamma(z) = 0$$
In the period p case, stripping p times leave J invariant so m must obey:

\[
\begin{pmatrix}
 p_p(z) & -q_p(z) \\
 a_p p_{p-1}(z) & -a_p q_{p-1}(z)
\end{pmatrix}
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
=
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
\]

which leads to the quadratic equation

\[
\alpha(z)m(z)^2 + \beta(z)m(z) + \gamma(z) = 0 \\
\alpha(z) = a_p p_{p-1}(z) \\
\beta(z) = p_p(z) + a_p q_{p-1}(z) \\
\gamma(z) = q_p(z)
\]
In the period p case, stripping p times leave J invariant so m must obey:

$$
\begin{pmatrix}
 p_p(z) & -q_p(z) \\
 a_p p_{p-1}(z) & -a_p q_{p-1}(z)
\end{pmatrix}
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
=
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
$$

which leads to the quadratic equation

$$
\alpha(z)m(z)^2 + \beta(z)m(z) + \gamma(z) = 0
\quad \alpha(z) = a_p p_{p-1}(z)
\quad \beta(z) = p_p(z) + a_p q_{p-1}(z)
\quad \gamma(z) = q_p(z)
$$

This is reminiscent of the results of Legendre and Galois on numeric continued fractions.
In the period p case, stripping p times leave J invariant so m must obey:

$$
\begin{pmatrix}
 p_p(z) & -q_p(z) \\
 a_p p_{p-1}(z) & -a_p q_{p-1}(z)
\end{pmatrix}
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
=
\begin{pmatrix}
 m(z) \\
 -1
\end{pmatrix}
$$

which leads to the quadratic equation

$$
\alpha(z)m(z)^2 + \beta(z)m(z) + \gamma(z) = 0 \\
\alpha(z) = a_p p_{p-1}(z)
$$

$$
\beta(z) = p_p(z) + a_p q_{p-1}(z) \\
\gamma(z) = q_p(z)
$$

This is reminiscent of the results of Legendre and Galois on numeric continued fractions.

By a direct calculation, the two discriminants are related by

$$
\beta^2 - 4\alpha\gamma = \sqrt{\Delta(z)^2} - 4
$$
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$.
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, S, including points at infinity.
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, S, including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus ℓ where ℓ is the number of open gaps.
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, S, including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus ℓ where ℓ is the number of open gaps.

Further analysis shows any meromorphic function which is different on the two sheets has degree at least $\ell + 1$.
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, S, including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus ℓ where ℓ is the number of open gaps.

Further analysis shows any meromorphic function which is different on the two sheets has degree at least $\ell + 1$. Moreover the m-function has a pole at ∞ on the “top” sheet and
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, \(S \), including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus \(\ell \) where \(\ell \) is the number of open gaps.

Further analysis shows any meromorphic function which is different on the two sheets has degree at least $\ell + 1$. Moreover the m-function has a pole at ∞ on the “top” sheet and in order that Im m not change sign over a gap, on the two sheeted surface, m must have a pole in each of the \(\ell \) gaps.
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}$, S, including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus ℓ where ℓ is the number of open gaps.

Further analysis shows any meromorphic function which is different on the two sheets has degree at least $\ell + 1$. Moreover the m-function has a pole at ∞ on the “top” sheet and in order that Im m not change sign over a gap, on the two sheeted surface, m must have a pole in each of the ℓ gaps.

Those points on the surface which “project down” to a gap, are a circle
We have thus proven that the m-function of a periodic Jacobi matrix has a continuation as a meromorphic function on the two sheeted Riemann surface of $\sqrt{\Delta(z)^2 - 4}, S$, including points at infinity. At closed gaps $\Delta(z)^2 - 4$ has double zeros so there are only branch points at the ends of open gaps and the surface is of genus ℓ where ℓ is the number of open gaps.

Further analysis shows any meromorphic function which is different on the two sheets has degree at least $\ell + 1$. Moreover the m-function has a pole at ∞ on the “top” sheet and in order that $\operatorname{Im} m$ not change sign over a gap, on the two sheeted surface, m must have a pole in each of the ℓ gaps.

Those points on the surface which “project down” to a gap, are a circle - two intervals glued together at the ends.
There is thus a map from the m-function to the set of points on the product over the gaps of the points on the surface that project down to that gap, i.e. onto a ℓ-dimensional torus.
There is thus a map from the m-function to the set of points on the product over the gaps of the points on the surface that project down to that gap, i.e. onto a \(\ell \)-dimensional torus. Moreover, if we consider the map as defined on all periodic Jacobi matrices with a given discriminant, \(\Delta \), one can prove with some effort that this map is a bijection.
There is thus a map from the m-function to the set of points on the product over the gaps of the points on the surface that project down to that gap, i.e. onto a ℓ-dimensional torus. Moreover, if we consider the map as defined on all periodic Jacobi matrices with a given discriminant, Δ, one can prove with some effort that this map is a bijection. Thus, this set is a torus of dimensions ℓ, called the \textit{isospectral torus}.
There is thus a map from the m-function to the set of points on the product over the gaps of the points on the surface that project down to that gap, i.e. onto a ℓ-dimensional torus. Moreover, if we consider the map as defined on all periodic Jacobi matrices with a given discriminant, Δ, one can prove with some effort that this map is a bijection. Thus, this set is a torus of dimensions ℓ, called the isospectral torus.

The possible m-functions are thus precisely the Herglotz functions (i.e. analytic functions in the upper half plane with positive imaginary part) that have a meromorphic continuation to the Riemann surface of $\sqrt{\Delta(z)^2 - 4}$ that have minimal degree and which are normalized to look like $-1/z$ near ∞. Christiansen, Simon and Zinchenko call these minimal Herglotz functions.
Now consider a general compact subset $e \subset \mathbb{R}$ which has $\ell + 1$ components so its complement in \mathbb{R} has ℓ gaps.
Now consider a general compact subset $e \subset \mathbb{R}$ which has $\ell + 1$ components so its complement in \mathbb{R} has ℓ gaps. Thus

$$e = [\alpha_1, \beta_1] \cup [\alpha_2, \beta_2] \cup \ldots \cup [\alpha_{\ell+1}, \beta_{\ell+1}]$$
Now consider a general compact subset $\epsilon \subset \mathbb{R}$ which has $\ell + 1$ components so its complement in \mathbb{R} has ℓ gaps. Thus

$$\epsilon = [\alpha_1, \beta_1] \cup [\alpha_2, \beta_2] \cup \ldots \cup [\alpha_{\ell+1}, \beta_{\ell+1}]$$

where the meaning of the α’s and β’s has changed subtly from the prior notation when we have a periodic problem with closed gaps.
Finite Gap Sets

Now consider a general compact subset $e \subset \mathbb{R}$ which has $\ell + 1$ components so its complement in \mathbb{R} has ℓ gaps. Thus

$$e = [\alpha_1, \beta_1] \cup [\alpha_2, \beta_2] \cup \ldots \cup [\alpha_{\ell+1}, \beta_{\ell+1}]$$

where the meaning of the α’s and β’s has changed subtly from the prior notation when we have a periodic problem with closed gaps.

The same method which we didn’t describe that constructs minimal Herglotz functions in the periodic case lets us do the same for the Reimann surface of

$$\sqrt{\prod_{j=1}^{\ell+1} (z - \alpha_j)(z - \beta_j)}$$
Almost Periodic Isospectral Torus

There is again an ℓ dimensional torus of half line Jacobi matrices, each of them almost periodic with essential spectrum exactly equal to ϵ.
There is again an ℓ dimensional torus of half line Jacobi matrices, each of them almost periodic with essential spectrum exactly equal to ϵ. The frequency spectrum of the almost periodic function is generated by the harmonic measures of the intervals, i.e. $\rho_\epsilon([\alpha_j, \beta_j])$.
There is again an ℓ dimensional torus of half line Jacobi matrices, each of them almost periodic with essential spectrum exactly equal to ϵ. The frequency spectrum of the almost periodic function is generated by the harmonic measures of the intervals, i.e. $\rho_\epsilon([\alpha_j, \beta_j])$. The result is thus

Theorem Every finite gap set, ϵ has an isospectral torus of almost periodic Jacobi matrices associated to it.
Almost Periodic Isospectral Torus

There is again an \(\ell \) dimensional torus of half line Jacobi matrices, each of them almost periodic with essential spectrum exactly equal to \(\varepsilon \). The frequency spectrum of the almost periodic function is generated by the harmonic measures of the intervals, i.e. \(\rho_\varepsilon([\alpha_j, \beta_j]) \). The result is thus

Theorem Every finite gap set, \(\varepsilon \) has an isospectral torus of almost periodic Jacobi matrices associated to it. These are all periodic with period \(p \) if and only if each band has harmonic measure \(\frac{j}{p} \) for \(j \in \{1, \ldots, p - 1\} \).