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Recap of Szegő Asymptotics

For OPUC, we showed for suitable measures on ∂D, that
z−nϕn(z)→ s(z) for |z| > 1.

For OPRL on [−2, 2], we
explained that

B(z)−npn(z)→ s(z) B(z) =
z

2
+

√
z2

4
− 1

which we wrote as

z−npn(z + z−1)→ s(z + z−1)

Here, the Joukowski map z 7→ z + z−1 enters as the
Riemann map of (C ∪ {∞})\D to (C ∪ {∞})\[−2, 2] that

takes ∞ to ∞ and z 7→ z
2 +

√
z2

4 − 1 is its inverse.

We also note that for e = [−2, 2] we have that
|B(z)| = exp(Ge(z)) making Szegő asymptotics consistent
with regularity.
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Multivalued Functions

Consider now what Szegő asymptotics might mean on C\e
where now e ⊂ R is not connected. For some analytic
function B(z), we want to consider pn(z)B(z)−n.

Since we
expect that regularity holds, we know that

|pn(z)|1/n → exp(Ge(z))⇒ |B(z)| = exp(Ge(z))

What determines the phase of B(z)? Since Ge(z) is
harmonic, it has a local harmonic conjugate so, locally, we
can define the phase to make B analytic. Thus we can
analytically continue along any curve. But there is no
reason to expect the local phase is preserved after
continuation along a closed curve. Indeed, it is not hard to
see that if one loops around a subset e1 ⊂ e, the phase
changes by 2πiρe(e1).
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Character Automorphic Functions

It is easy to see that there is an group homomorphism of
the fundamental group of (C ∪ {∞})\e to ∂D (as a
multiplicative group)

so that continuing around a curve
multiplies B(z) by the value of the homomorphism on that
curve. Since the complements of D and [−2, 2] in the
Riemann sphere are simply connected, we could define B(z)
globally in that case.

A function like B(z) in the general case is called character
automorphic. When e is an `-gap set, the family of possible
characters is an ` dimensional torus. Typically, the
characters of {B(z)n}∞n=1 are dense in this torus.
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Widom’s Surmise

Since the character of B(z)n changes with n, we can’t
expect that pn(z)B(z)−n has a limit.

Rather Widom
surmised that the reasonable expectation is that there
should be a family of function s(z, χ) depending
continuously on a character, χ, so that if χn is the
character of B(z)−n, then

pn(z)B(z)−n − s(z, χn)→ 0

It follows that pn(z)B(z)−n is asymptotically almost
periodic.
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Some History

Widom [Adv. Math 3 (1969), 127-232] didn’t merely
surmise this, but established it for certain families of OPs
supported on a finite number of Jordan curves and/or arcs
in the plane and also for certain Chebyshev polynomials.

It turns out to be useful for further developments to consider
functions on the universal cover rather than multivalued
functions, an approach sometimes called the Fuchsian group
approach. In the rest of this lecture, we’ll discuss this.

This Fuchsian group approach to finite gap problems is due
to Sodin–Yuditskii [J. Geom. Anal. 7 (1997), 387–435] and
developed to get Szegő asymptotics by Peherstorfer–
Yuditskii [J. Anal. Math. 89 (2003), 113-154]. This work
was extended and explicated in a series of papers by
Christiansen–Simon–Zinchenko [Const. Approx. 32 (2010),
1–65; 33, (2011), 365–403; 35 (2012) 259–272].
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A Pretty Graphic

One goal will be explain how the following picture is
associated to a finite gap ` = 2 problem:
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A Pretty Graphic

Let’s begin by analyzing some of its features.

It has one (faint) large circle that represents ∂D, the
boundary of the unit disk. All the other circles are
“orthocircles,” i.e., cross ∂D orthogonally.

This is no coincidence. They are geodesics in the hyperbolic
metric or rather the part within D are geodesics in the
Poincaré metric.
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They come in nested circles, three inside each earlier
“generation.”

Indeed, this nesting really goes on indefinitely
but we only show three generations.

There is an additional orthocircle showing—the straight line
(−1, 1).

The fact that there appear to be bigger and smaller, even
really tiny, circles is an artifact of the Euclidean view we
make so that the “circle at ∞” (∂D) is visible. For any
circle, even the really tiny ones, there is a Möbius
transformation which is an automorphism of D and isometry
in the hyperbolic metric mapping that circle to R and the
part inside D to (−1, 1).
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Universal Cover of C ∪ {∞} \ e

As we saw, if ` ≥ 1, C∪ {∞} \ e isn’t simply connected and
we want to lift functions to its universal cover.

Any Riemann surface has a universal cover which is also a
Riemann surface since the local analytic structure “below”
lifts. The uniformization theorem says this universal cover is
D except for a few special cases of the underlying surface:
C ∪ {∞}, C, a torus, C \ {0}.
So there is a covering map, x(z), from D to (C ∪ {∞}) \ e
which is many to one. As with any covering map, there is a
discrete group of transformations which in this case preserve
the complex structure so are Möbius transformations of D to
D.Thus, there is a discrete group of Möbius transformations
(aka Fuchsian group), Γ, so that x(γ(z)) = x(z). Indeed,
x(z) = x(w)⇔ ∃ γ ∈ Γ with γ(z) = w.
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Finite Gap Fundamental Domains

If x is a map of the required type and g : D→ D is a
Möbius automorphism, then x ◦ g is also a covering map

although the Fuchsian group is now g−1Γg.

We normalize x by demanding x(0) =∞ and
limz→0,z 6=0 z x(z) > 0. This implies x maps the region in
D ∩ C+ just above R to C−.

The Dirichlet domain of Γ is defined to be (ρ = Poincaré
metric tanh[ρ(w, z)] = |z − w|/|1− zw|)

D(Γ) = {w ∈ D | ρ(w, 0) = inf
γ∈Γ

ρ(w, γ(0))}

◦
D(Γ) = {w ∈ D | ρ(w, 0) < inf

γ 6=e
ρ(w, γ(0))}
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(ρ = Poincaré
metric tanh[ρ(w, z)] = |z − w|/|1− zw|)

D(Γ) = {w ∈ D | ρ(w, 0) = inf
γ∈Γ

ρ(w, γ(0))}
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◦
D(Γ) is the interior of D(Γ) and D(Γ) is the closure of
◦
D(Γ).

D and
◦
D are fundamental domains for x in that x is 1–1

on
◦
D, and in our case, 2–1 on D \

◦
D. It will turn out that

x[
◦
D] = C ∪ {∞} \ [α1, β`+1] and x is 1–1 on D \

◦
D ∩ C+.

By normalization, x(z) ∼ C/z, C > 0 near z = 0, so z
running from 0 to −1, has x(z) going from −∞ ∈ R up to
α1. Why α1? Because z → ∂D means x(z) must approach
a point of ∪`+1

j=1[αj , βj ].
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We have thus proven x : (−1, 1) to R ∪ {∞} \ [α1, β`+1].

If we go slightly above [α1, β1] or below, x−1 maps onto a
piece almost on ∂D in C− (or C+).

If we now reach (β1, α2), x−1 must map in D along a curve.
If we had normalized, so that x̃(0) = 1

2(β1 + α2), by the
same analysis (β1, α2) would be the image of (−1, 1). Since
x̃ = x ◦ g, we see the curve must be an image of (−1, 1)
under a Möbius transformation, that is an orthocircle.
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We can now understand part of the figure.

We have 2 gaps and 3 bands and we can understand the
fundamental domain.
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If e is a subset of R with ` gaps,

the fundamental domain is
D with the “inside” of 2` disjoint orthocircles removed, ` in
the upper half-plane and their ` conjugates.

Let Cz = z̄ and let Rj be reflection in the jth orthocircle in
the upper half-plane, explicitly if the circle is |z − zj | = rj ,
then

Rjz = zj +
r2
j

z̄ − z̄j
which is a conjugate Möbius transform with Rj∞ = zj ; Rj
leaves the orthocircle pointwise fixed.
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Let γj = RjC which is a Móbius transformation.

Since x is real on (−1, 1), x(z̄) = x(z).

Since x is real on orthocircle associated to Rj ,
x(Rjz) = x(z).

Thus, x(γjz) = x(z), i.e., γj ∈ Γ.

It is not hard to show that Γ is generated by the γj ’s.
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We now return to our example

The second generation circles inside one of the first
generation circles are exactly the image of the three other
first generation circles, etc.
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Λ = {limit points of {γ(0) | γ ∈ Γ}}

is easily seen to be nowhere dense and we’ll note shortly
that it is of Hausdorff dimension strictly less than 1.

x has an analytic continuation to ∂D \ Λ since it has
boundary values (mapping to ∪`+1

j=1[αj , βj ]) and we can use
the Schwarz reflection principle.

Indeed, x has a meromorphic continuation to C ∪ {∞} \ Λ.
By mapping C \ D to S−, the lower sheet of the Riemann

surface of
√∏`+1

j=1(z − αj)(z − βj), one sees this extended
x is essentially a covering map of S.
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Beardon’s Theorem

A. F. Beardon (Acta Math. 127 (1971), 221–258) proved
an important result about certain finitely generated
Fuchsian groups that include the ones associated to finite
gap sets.

It has all of the following consequences:
The set of limit points of the orbit {γ(0) | γ ∈ Γ}
(which is the same as the limit points of
{γ(z) | γ ∈ Γ} for any z ∈ D) has Hausdorff dimension
strictly less than 1.
If Rk is the union of the interiors of all 2`(2`− 1)k−1

orthocircles at generation k, and ∂Rk = ∂D ∩Rk and
|·| is dθ/2π measure, then |∂Rk| ≤ C0e

−C1k.
For some s < 1, we have∑

γ∈Γ

(1− |γ(z)|)s <∞ for all z ∈ D

so, in particular, this holds for s = 1.
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Blaschke Products

Since
∑
|1− γ(z0)| <∞, we can form Blaschke products.

We’ll use B for such products although they will obey
|B(z)| < 1, the opposite of the B we begin this lecture
with. This B is defined on D, not on C \ e. But there is a
relation.

B(z, z0) =
∏
γ∈Γ

bγ(z0)(z) bw(z) =
|w|
w

w − z
1− wz

bγ0(zj)(z) and bz0(γ−1
0 (z)) have the same zeros and poles

and so the ratio is a constant, which is magnitude 1 on ∂D,
so a phase factor. Since {γγ0 | γ ∈ Γ} = {γ ∈ Γ}, we see
that for each z0, there is Cz0(γ) a map of Γ to ∂D so that

B(γ(z), z0) = Cz0(γ)B(z, z0)
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Blaschke Products

So this product is character automorphic.

Thus, − log|B(z, z0)| defines a function on
(C ∪ {∞}) \ (e ∪ {x(z0)}), is harmonic on that set and
goes to zero as one approaches e. (since |B(z, z0)| → 1 as
z ∈ ∂D in the “bands”).

Since − log|B(z, z0)| has a log singularity as x(z)→ x(z0)
we see it is a potential theorist’s Green’s function with
charge at x(z0).

In particular, if B(z) ≡ B(z, 0), we see that

|B(z)| = exp(−Ge(x(z)))
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