
A random walk proof of Kirchhoff’s matrix tree theorem

Michael J. Kozdron

University of Regina

http://stat.math.uregina.ca/∼kozdron/

Geometry of Random Walks and SLE

June 17, 2015

Based on joint work with Larissa Richards (Toronto) and Dan Stroock (MIT) with

special thanks to Greg Lawler (Chicago) and Shlomo Sternberg (Harvard).

Preprint available from arXiv:1306.2059.

Some History

Kirchhoff’s matrix tree theorem gives a formula for the number of spanning trees of

a finite graph in terms of a matrix derived from that graph.

• 1880s: Gustav Kirchhoff was motivated to study spanning trees by problems

arising from his work on electrical networks.

• 1979: Greg Lawler introduces the loop-erased walk in his Ph.D. thesis as a

model of self-avoiding walk on the advice of Ed Nelson, his advisor: “Why

don’t you try erasing the loops of a random walk!”

• 1996: David Wilson used “cycle-popping” to prove an algorithm for generating

a uniform spanning tree. His original proof is of a very different flavour. The

matrix tree theorem does not follow directly from the cycle-popping proof.

• 1997-2010: In the book Probability on Trees and Networks by Russell Lyons

with Yuval Peres, the cycle-popping proof of Wilson’s algorithm is presented.

They then use the cycle-popping proof to give a new proof of Cayley’s formula

for the number of spanning trees of a complete graph, but not MTT.

• 1999: Greg Lawler provides a new proof of Wilson’s algorithm via Green’s

functions. (In an article in the Kesten Festschrift.) The article does not

mention the MTT.

1

• 2010: Geoffrey Grimmett’s book Probability on Graphs discusses Kirchhoff’s

work on electrical networks, but his proof of Wilson’s algorithm uses

cycle-popping.

• 2010: In Random Walk: A Modern Introduction by Greg Lawler and Vlada

Limic, there is a chapter dedicated to loop-erased walk which includes his proof

of Wilson’s algorithm and discusses the fact that the MTT follows as an

immediate corollary to his proof.

• 2011: Yves LeJan’s Markov Paths, Loops, and Fields includes (essentially) this

proof of Wilson’s algorithm. Deducing Cayley’s formula and the MTT left as

exercises.

• These two books are for a specialized audience, and unfortunately, Lawler’s

proof of Wilson’s algorithm is not widely known or immediately accessible,

even among probabilists.

• As Wendelin Werner discussed on Monday in his report on news from the loop

soup front, the idea of “adding loops” has proved to be very fruitful for

studying SLE and more.

• 2013: Our original goal was to give an expository account of Lawler’s proof.

These ideas can be applied to deduce results for Markov processes. Lawler-

Limic also deduce results for Markov processes, but not quite the same as ours.

2

Set-up

Suppose that Γ = (V,E) is a finite graph consisting of n+ 1 vertices labelled

y1, y2, · · · , yn, yn+1.

• undirected

• connected

• no multiple edges (easy to relax, but adds extra notation)

Note that yi ∼ yj are nearest neighbours if (yi, yj) ∈ E.

y1 y5

y4

y3 y2

y6

3

The Graph Laplacian Matrix

Recall that the graph Laplacian L is the matrix L = D −A, where D is the degree

matrix and A is the adjacency matrix.

y1 y5

y4

y3 y2

y6

L =

























y1 y2 y3 y4 y5 y6

y1 3 0 −1 −1 −1 0

y2 0 2 0 −1 0 −1

y3 −1 0 3 −1 0 −1

y4 −1 −1 −1 4 −1 0

y5 −1 0 0 −1 2 0

y6 0 −1 −1 0 0 2

























4

Kirchhoff’s Matrix Tree Theorem

Suppose that L{k} denotes the submatrix of L obtained by deleting row k and

column k corresponding to vertex yk.

Theorem (Kirchhoff). If Ω = {spanning trees of Γ}, then

det[L{1}] = det[L{2}] = · · · = det[L{n}] = det[L{n+1}]

and that these are equal to |Ω|, the number of spanning trees of Γ.

Practically, this is very hard to compute!

Usual modern way to prove MTT is purely algebraic and involves Cauchy-Binet

formula.

5

Example

This graph has 29 spanning trees.

To see this, consider deg(y4) in the spanning tree.

y1 y5

y4

y3 y2

y6

deg (y4) # Spanning Trees

4 2

3 10

2 13

1 4

29

6

Example (cont.)

This graph has 29 spanning trees. For example, using MTT, det[L{5}] = 29.

y1 y5

y4

y3 y2

y6

L{5} =



















y1 y2 y3 y4 y6

y1 3 −1 −1 −1 0

y2 −1 2 −1 0 0

y3 −1 −1 4 −1 −1

y4 −1 0 −1 3 0

y6 0 0 −1 0 2



















7

Random Walk on a Graph

Let {Sk, k = 0, 1, · · · } denote simple random walk on graph Γ which has

transition probabilities

P{S1 = yj | S0 = yi} = p(i, j) =







1
deg(yi)

, if yi ∼ yj

0, else,

i.e., each neighbour is equally likely to be chosen at the next step so that p(i, j) is

the (i, j)-entry of P = D−1A.

y1 y5

y4

y3 y2

y6

P = D−1A =

























y1 y2 y3 y4 y5 y6

y1 0 0 1
3

1
3

1
3

0

y2 0 0 0 1
2

0 1
2

y3
1
3

0 0 1
3

0 1
3

y4
1
4

1
4

1
4

0 1
4

0

y5
1
2

0 0 1
2

0 0

y6 0 1
2

1
2

0 0 0

























8

Random Walk on a Graph

Recall. The graph Laplacian matrix L is defined by L = D −A.

We can rewrite it as

L = D(I−D−1A) = D(I− P).

Let ∆ ⊂ V , ∆ 6= ∅. Then

L∆ = D∆(I∆ − P
∆)

for the matrices obtained by deleting the rows and columns associated to the

entries in ∆.

Note that P∆ is strictly substochastic; that is, non-negative entries and rows sum

to at most 1 with at least one row sum less than 1.

Thus (I∆ − P∆)−1 exists.

9

The Key Random Walk Green’s Function Facts

Let ζ∆ = inf{j ≥ 0 : Sj ∈ ∆} be the first time the random walk visits ∆ ⊂ V .

For x, y /∈ ∆, let

G∆(x, y) = Ex

[

∞
∑

k=0

1{Sk = y, k < ζ∆}

]

be the expected number of visits to y by simple random walk on Γ starting at x

before entering ∆.

• If G∆ = [G∆(x, y)]x,y∈V \∆, then

G
∆ = (I∆ − P

∆)−1.

• If r∆(x) denotes the probability that simple random walk starting at x returns

to x before entering ∆, then

G∆(x, x) =
∞
∑

k=0

r∆(x)k =
1

1− r∆(x)
.

10

Wilson’s Algorithm (1996)

Wilson’s Algorithm generates a spanning tree uniformly at random without

knowing the number of spanning trees.

• Pick any vertex. Call it v.

• Relabel remaining vertices x1, · · · , xn.

• Start a simple random walk at x1. Stop it the first time it reaches v.

• Erase loops.

• Find the first vertex not in the backbone.

• Start a simple random walk at it.

• Stop it when it hits the backbone.

• Erase loops.

• Repeat until all vertices are included in the backbone.

Clearly, this generates a spanning tree. We will prove that it is uniform among all

possible spanning trees.

11

Example: Wilson’s Algorithm on Γ

It is easier to explain this example illustrating Wilson’s algorithm without

relabelling the vertices.

Start a SRW at y2. Stop it when it first reaches y1.

Assume the loop-erasure is [y2, y4, y1]. Add this branch to the spanning tree.

y1 y5

y4

y3 y2

y6

y1 y5

y4

y3 y2

y6

12

Example: Wilson’s Algorithm on Γ

Start a SRW at y3. Stop it when it reaches {y2, y4, y1}.

Assume the loop-erasure is [y3, y6, y2]. Add this branch to the spanning tree.

y1 y5

y4

y3 y2

y6

y1 y5

y4

y3 y2

y6

13

Example: Wilson’s Algorithm on Γ

Finally, start a SRW at y5 and stop it when it reaches {y2, y4, y1} ∪ {y3, y6}.

Assume the loop-erasure is [y5, y4]. Add this branch to the spanning tree.

y1 y5

y4

y3 y2

y6

y1 y5

y4

y3 y2

y6

We have generated a spanning tree of Γ with three branches

∆1 = [y2, y4, y1], ∆2 = [y3, y6, y2], ∆3 = [y5, y4].

14

Computing a Loop-Erased Walk Probability

Suppose ∆ ⊂ V, ∆ 6= ∅.

Let x1, · · · , xK be distinct elements of a connected subset of V \∆ labelled in such

a way that xj ∼ xj+1 for j = 1, · · · ,K. Note that xK+1 ∈ ∆.

Consider simple random walk on Γ starting at x1. Set ξ∆ = inf{j ≥ 0 : Sj ∈ ∆}.

Let

P∆(x1, · · · , xK , xK+1) := P{L({Sj , j = 0, · · · , ξ∆}) = [x1, · · · , xK , xK+1]}

denote the probability that loop-erasure of {Sj , j = 0, · · · , ξ∆} is exactly

[x1, · · · , xK+1].

15

Computing a Loop-Erased Walk Probability

Question: How can we compute

P{L({Sj , j = 0, · · · , ξ∆}) = [x1, · · · , xK , xK+1]}?

For the loop-erasure to be exactly [x1, · · · , xK+1], it must be the case that

• the SRW started at x1, then

• made a number of loops back to x1 without entering ∆, then

• took a step from x1 to x2, then

• made a number of loops back to x2 without entering ∆ ∪ {x1}, then

• took a step from x2 to x3, then

• made a number of loops back to x3 without entering ∆ ∪ {x1, x2}, then

• · · ·

• made a number of loops back to xK without entering

∆ ∪ {x1, x2, · · · , xK−1}, then

• took a step from xK to xK+1 ∈ ∆.

16

Computing a Loop-Erased Walk Probability

So,

P∆(x1, · · · , xK+1)

=
∞
∑

m1,··· ,mK=0

r∆(x1)
m1p(x1, x2)r∆∪{x1}(x2)

m2p(x2, x3) · · ·

· · · r∆∪{x1,··· ,xK−1}
(xK)mK p(xK , xK+1)

=

K
∏

j=1

1

deg(xj)

1

1− r∆(j)(xj)

=
K
∏

j=1

1

deg(xj)
G∆(j)(xj , xj)

where ∆(1) = ∆ and ∆(j) = ∆ ∪ {x1, · · · , xj−1} for j = 2, · · · ,K.

17

Proof of Wilson’s Algorithm

Suppose that T ∈ Ω was produced by Wilson’s algorithm with branches

∆0 = {v}, ∆1 = [x1,1, · · · , x1,k1
], · · · ,∆L = [xL,1, · · · , xL,kL

].

We know that each branch in Wilson’s algorithm is generated by a loop-erased

random walk.

P (T is generated by Wilson’s algorithm) =
L
∏

l=1

P∆l

(xl,1, · · · , xl,kl
)

where ∆l = ∆0 ∪ · · · ∪∆l−1 for l = 1, · · · , L.

18

Proof of Wilson’s Algorithm

Recall: The Loop-Erased Walk Probability Calculation

P∆(x1, · · · , xK , xK+1) =
K
∏

j=1

G∆(j)(xj , xj)

deg(xj)
.

Hence, the probability that T is generated by Wilson’s algorithm is

L
∏

l=1

P∆l

(xl,1, · · · , xl,kl
) =

L
∏

l=1

kl−1
∏

j=1

G∆l(j)(xl,j ,xl,j)

deg(xl,j)

where ∆l(1) = ∆l and ∆l(j) = ∆l ∪ {xl,1, · · · , xl,j−1} for j = 2, · · · , kl − 1.

To finish the proof we need some facts from linear algebra.

19

Understanding the Next Linear Algebra Slides

Recall. If x, y /∈ ∆, then G∆(x, y) is the expected number of visits to y by simple

random walk on Γ starting at x before entering ∆.

Exercise.

If x, y /∈ ∆, then

G∆(x, x)G∆(y, y)−G∆(x, y)G∆(y, x) = G∆(x, x)G∆\{x}(y, y),

i.e.,

det





G∆(x, x) G∆(x, y)

G∆(y, x) G∆(y, y)



 = G∆(x, x)G∆\{x}(y, y).

Split the number of visits to x by SRW starting at x into two pieces: those that

occur before the first visit to y and those that occur after the first visit to y.

If x, y, z /∈ ∆, then

det









G∆(x, x) G∆(x, y) G∆(x, z)

G∆(y, x) G∆(y, y) G∆(y, z)

G∆(z, x) G∆(z, y) G∆(z, z)









= G∆(x, x)G∆\{x}(y, y)G∆\{x,y}(z, z).

20

A Linear Algebra Fact

M is a non-degenerate N ×N matrix and ∆ ⊂ {1, 2, · · · , N}.

M∆: matrix formed by deleting rows and columns corresponding to indices in ∆.

1. Cramer’s Rule

(M−1)ii =
det[M{i}]

det[M]

2. Suppose (σ(1), · · · , σ(N)) is a permutation of (1, · · · , N). Set ∆1 = ∅ and

for j = 2, · · · , N , let ∆j = ∆j−1 ∪ {σ(j − 1)} = {σ(1), · · · , σ(j − 1)}. If

M∆(j) is non-degenerate for all j = 1, · · · , N , then

det[M]−1 = det[M−1] =
N
∏

j=1

(M∆j)−1
σ(j),σ(j)

.

21

Some Linear Algebra: Example

We illustrate how to use the notation of the linear algebra fact to do a computation.

Suppose that M is the non-degenerate 3× 3 matrix

M =









1 2 3

1 9/10 2/5 −1/10

2 1/10 −2/5 −9/10

3 −1/5 4/5 −1/5









so that det[M−1] = det[M]−1 = (4/5)−1 = 5/4.

We will now calculate this determinant using the formula.

22

Let σ be any permutation of {1, 2, 3}, say {2, 3, 1}, so that

∆1 = ∅, ∆2 = {σ(1)} = {2}, ∆3 = {σ(1), σ(2)} = {2, 3}. Hence,

(M∆1)−1 = M−1 =









1 2 3

1 1 0 −1/2

2 1/4 −1/4 1

3 0 −1 −1/2









,

(M∆2)−1 =



















1 3

1 9/10 −1/10

3 −1/5 −1/5



















−1

=





1 3

1 1 −1/2

3 −1 −9/2



,

(M∆3)−1 =
[

1

1 10/9
]

and so

3
∏

j=1

(M∆j)−1
σ(j)σ(j)

= (M∆1)−1
22 (M∆2)−1

33 (M∆3)−1
11 = −

1

4
· −

9

2
·
10

9
=

5

4
.

23

Proof of Wilson’s Algorithm

Recall that we picked an arbitrary vertex v where we stopped our initial walk.

Also recall that G∆ = (I∆ − P∆)−1 and L∆ = D∆(I∆ − P∆).

By the linear algebra fact,

det[G{v}] =
L
∏

l=1

kl−1
∏

j=1

G∆l(j)(xl,j , xl,j)

Thus

P (T is generated by Wilson’s algorithm) =
det[G{v}]

det[D{v}]
=

1

det[D{v}] det[I{v} − P{v}]

= det[L{v}]−1.

In addition, we can see that the right hand side of the equation is independent of

the ordering of the remaining n vertices. Thus,

P (T is generated by Wilson’s algorithm) = det[L{v}]−1 =
1

|Ω|

24

Corollary: Proof of the Matrix Tree Theorem

Since

P (T is generated by Wilson’s algorithm) = det[L{v}]−1 =
1

|Ω|

we have

|Ω| = det[L{v}].

Since v was arbitrary, we conclude

|Ω| = det[L{1}] = det[L{2}] = · · · = det[L{n}] = det[L{n+1}].

25

Application: Cayley’s Formula

If Γ = (V,E) is a complete graph on N + 1 vertices; i.e., there is an edge

connecting any two vertices in V . Then

Number of spanning trees of Γ is (N + 1)N−1.

1

2

34

5 2

3

The number of spanning trees of K5 is 53 = 125.

26

Application: Cayley’s Formula

Start a simple random walk at x.

Suppose that ∆ ⊂ V \{x}, where ∆ 6= ∅, |∆| = m.

Recall.

r∆(x) is the probability that simple random walk starting at x returns to x before

entering ∆.

Let r∆(x; k) be the probability that simple random walk starting at x returns to x

in exactly k steps without entering ∆ so that

r∆(x) =
∞
∑

k=2

r∆(x; k).

Note that a SRW cannot return to its starting point in only 1 step.

27

Application: Cayley’s Formula

Since Γ is the complete graph on N +1 vertices, we have partitioned the vertex set:

V1 = {x}, V2 = ∆ with |V | = m, and V3 with |V3| = N −m.

Thus,

r∆(x; k) = P{S0 = x, S1 ∈ V3, · · · , Sk−1 ∈ V3, Sk = x}

=
N −m

N

(

N − 1−m

N

)k−2 1

N

and so

r∆(x) =
N −m

N2

∞
∑

k=2

(

N − 1−m

N

)k−2

=
N −m

N(m+ 1)
.

Hence,

G∆(x, x) =
1

1− r∆(x)
=

N(m+ 1)

m(N + 1)
. (∗)

28

Application: Cayley’s Formula

Now, suppose that the vertices of Γ are {x1, . . . , xN+1}. Start the SRW at x1 and

assume that ∆j = {x1, . . . , xj} for j = 1, . . . , N .

Since |∆j | = j, we have from our linear algebra fact and (∗) that

det[G{x1}] =

N
∏

j=1

G∆j
(xj , xj) =

N
∏

j=1

N(j + 1)

j(N + 1)
=

NN (N + 1)!

(N + 1)NN !
=

NN

(N + 1)N−1
.

Since each of the (N + 1) vertices has degree N , we conclude

|Ω| =
det[D{x1}]

det[G{x1}]
=

NN

NN

(N+1)N−1

= (N + 1)N−1.

29

Application: Markov Chains

Note that this is a special case of a more general theorem for Markov processes.

Theorem (K-Richards-Stroock). If P is the transition matrix for an irreducible,

aperiodic time-homogeneous Markov chain on {1, . . . , N}, then its unique

stationary probability distribution π = (πk, k = 1, . . . , N) is given by

πk =
det[(I− P){k}]

N
∑

j=1

det[(I− P){j}]

(∗)

where (I− P){k} is obtained from I− P by deleting row k and column k.

For a given state j, let ρj be the first time after 0 that the chain visits j; in other

words, if the chain starts at state i, then ρj is the time of the first visit to j if

i 6= j, whereas ρj is the time of the first return to j if i = j. If Pi is the

distribution of the Markov chain assuming it starts at i, then

Pi{ρj ≤ ρi} =
det[(I− P){j}]

det[(I− P){i,j}]
. (∗∗)

30

Example

Suppose that

P =









3/4 0 1/4

1/8 1/8 3/4

1/12 1/4 2/3









which is the transition matrix for an irreducible, aperiodic Markov chain on
{1, 2, 3}. Since

(I−P)
{1}

=

[

7/8 −3/4

−1/4 1/3

]

, (I−P)
{2}

=

[

1/4 −1/4

−1/12 1/3

]

, (I−P)
{3}

=

[

1/4 0

−1/8 7/8

]

so that

det[(I−P){1}] =
5

48
=

10

96
, det[(I−P){2}] =

1

16
=

6

96
, det[(I−P){3}] =

7

32
=

21

96
,

we see immediately from (∗) that

π1 =
10

10 + 6 + 21
=

10

37
, π2 =

6

10 + 6 + 21
=

6

37
, π3 =

21

10 + 6 + 21
=

21

37
.

31

Example

Assuming that the chain starts in state 3, the probability that it visits state 2

before its first return to state 3 is

P3{ρ2 ≤ ρ3} =
det[(I− P){2}]

det[(I− P){2,3}]
=

1/16

1/4
=

1

4
.

Of course, we could have deduced this immediately. Observe from P that if the

chain is in state 1, then it cannot move to state 2. Thus, starting in state 3, the

only way for the chain to visit state 2 before its first return to state 3 is if X1 = 2.

This occurs with probability p(3, 2) = 1/4.

However, it is more involved to directly compute the probability that the same

chain visits state 1 before its first return to state 3. From (∗∗), however, the

probability is easily found to be

P3{ρ1 ≤ ρ3} =
det[(I− P){1}]

det[(I− P){1,3}]
=

5/48

7/8
=

5

42
.

32

Thank you.

33

