Tate systems & the BSD conjecture

I. Background

Conjecture (BSD, '65): E/k elliptic curve, L(E,s) L-function

\[\text{rank } E(k) = \text{ord}_{s=1} L(E, s) \]

\text{analytic rank}

Generalisations:
- for A/k abelian variety (e.g. Jacobians of alg var/k)
- abelian var/number fields

Known results for E/k:
- Coates-Wiles, '77: E complex mult,
 \[L(E,1) \neq 0 \]
- Kolyvagin '89, Kato '94: E (modular)
 elliptic curve, \[\text{ord}_{s=1} L(E, s) = 0, 1 \]

*Bartoli-H-Darmon-Rotger, '15:
 equivariant BSD in analytic rk 0,
 E/k twisted by 2-dim' odd Artin rep

Remark: E/k, analytic rank \geq 1
today: case of ab. surfaces/elliptic curves
over number fields

I. Kato's strategy in analytic rk 0

Def: \(p \)-adic rep of \(G_k = \text{Gal}(\bar{k}/k) \) =
fin-dim \(\mathbb{Q}_p \)-vector space \(V \) with ct.
action of \(G_k \), invariant outside finite set
of primes
\[L(V,s) \] conject. to have numer/aux.
cont' to \(L \)
\(\exists x : V = C_f \quad L(V,s) = \zeta(s) \)

\(\forall x : g = C_f \quad L(V,s) = L(E,s) \quad L(V,s) = L(E,s+1) \)

\(V = \text{modular form, } \omega \geq 2 \)

- \(\text{p-adic } \mathbb{Q}_p^* \to \text{Sel}(E,V) \subset H^1(C_f,V) \)

- \(\text{Ex: } E(\mathbb{Q}) \otimes \mathbb{Q}_p \to \text{Sel}(E,V) \quad (*) \)

- \(\text{Similar for abelian varieties} \)

Conjecture (Beilinson-Kato):

\[\text{ord}_{s=1} L(V,s) = \dim_{\mathbb{Q}_p} \text{Sel}(E,V) - \dim_{\mathbb{Q}_p} V^* \]

- Usually 0

Kato: proved BK Conjecture for \(V \in E \) when \(L(E,1) \neq 0 \)

\(\Rightarrow \text{hyp } (*) \quad \text{This implies BSD when analytic } \text{rk } = 0. \)

Main tool: \(\text{Euler system} \) (discovered by Kolyvagin)

Def (Kato): ES for \(V = \) collection of cohomology classes \((Z_n)_{n \geq 1}, Z_n \in H^1(C_f/E_n), V)\)

which satisfy the so-called ES norm relations as \(n \) varies

\(\text{Euler system modules } \) (Kato, Rubin):

\[\text{If } Z_n \neq 0, \quad \text{then } \dim H^1(\mathbb{Q}_p/V_n) = 0 \]

Main steps in Kato's proof:

(i) Construct ES \((Z_n)\) for \(V = V_f \)

(ii) Evaluation \(x_1 \) to \(L(E,1) \) (explicit reciprocity law)

Essential ingredient. \(E \) is modular

\[E \leftrightarrow \text{mod. form of weight } \]

\[\Rightarrow V_f \otimes \text{is a direct summand of } \]

\[H^1(Y_{\mathcal{O}_E}) \quad \text{of modular curve} \]
III. The case of abelian varieties

Paraniodular conjecture (Brumer-Kramer):

\{ abelian surface \} \leftrightarrow \{ certain genus 2 \\
\text{of general type} \} \leftrightarrow \{ \text{Siegel modular forms}, \text{w} (2,2) \}

\[V_{\mathbb{F}} \leftrightarrow V_{\mathbb{F}_{\ell}, \text{smooth}} \]

Genus 2 Siegel \(K \)-: analogue of \(K \)- for \(g \) \text{APq}
\(\Rightarrow \) global sections of certain line/vector bundles on \(\text{Siegel} \) 3-folds

Remarks:
* Bajo-Klosin: proved conj. for \(F \) of Saito-Kurokawa type
* Klaar-Thorne: many cases of conj. for \(E/k \), \(K \) imag. quad.
* Boxto: Calegari-fee-Pilloni: potential modularity

Problem: even assuming paraniodular conj., \(V_{\mathbb{F}} \) is \textbf{not} a direct summand of \(H_{\mu}^0(S) \)

5 Sierpinski 3-fold!

But: \(V_{\mathbb{F}} \otimes V_{\mathbb{F}_{\ell}, \text{smooth}} \) is the \(\ell \)-adic limit

\[\text{of } V_{\mathbb{F}_{\ell}, \text{smooth}} \]

\(\Rightarrow \) do appear in \(H_{\mu}^0(S) \)

11. Problem: \((2,2) \) is too small
\(\Rightarrow \) \(w \) \{ \text{modular forms} \}

Strategy for constructing ES for \(V_{\mathbb{F}} \):
1. Use group methods to construct ES \((\mathbb{Z}_\ell)^m \)
 for \(V_{\mathbb{F}_{\ell}, \text{smooth}} \), \(F \) \text{w} \((k_1,k_2), k_1 > k_2 > 3 \)

2. Use \(\ell \)-adic limiting process to obtain ES \((\mathbb{Z}_\ell)^n \) for \(V_{\mathbb{F}} \)

Thus (Zaimi, 3, \text{11}): (1)
(11) in progress (Z)

Problem: to get at BSD, need tell

\[Z_{\mathbb{F}}^{(n)} \leftrightarrow L(A,1) \]
Solve: use p-adic variation

(1) prove \mathcal{L}^{m} of Z_{k}^{*}, if $k \geq 2$, $k \geq 3$, to values of $L_{p, \text{spin}}(3,5)$

(2) use p-adic limiting process to deduce $Z_{l}^{A} \leftarrow \mathcal{L}(A,1)$

Problem: need a relation (Euler systems) \leftrightarrow (values of L-functions)
which deforms p-adically

Right tool: p-adic L-function.

Let $F^{k}(L, k, k)$ be a Coleman family through $F^{k}(5,5) = F^{5(k)}$, k odd.

Then F is p-adic L-function.

Lemma: from above, p-adic deformation, get

$Z_{l}^{(k)} \leftarrow \mathcal{L}(A,1)$

\Rightarrow deduce, if $L(A,1) \neq 0$, then $Z_{l}^{(k)}
eq 0$

Thus $Z_{l}^{(k)}$ above, $Z_{l}^{(k)} \neq 0$

\Rightarrow (ES moduli) $Sel(8, V_{4}) = 0$

\Rightarrow rank $A(k) = 0$, since $A(8) \not\in Sel$. □
Remarks: (1) if A arises from elliptic curve over \mathbb{Q}, then smoothness of eigenvariety is implied by conjecture of Calegari-Hajir.

(2) (in progress) BSD & elliptic analytic $rk 0$ for a twisted by 2-dim odd Artin rep.

(3) $(L, (2))$: many cases of BK conjecture via analytic $rk 0$ for $V_{\text{spin}}(F)$, F wt (k_1, k_2), $k_1, k_2 \geq 3$.