skip to content

Empirical stochastic modelling in weather and climate science: applications from subgrid-scale parametrisation to analysis & modelling of palaeoclimatic records

Friday 27th August 2010 - 10:00 to 11:00
INI Seminar Room 1
Session Title: 
Stochastic climate models
The dynamics of weather and climate encompass a wide range of spatial and temporal scales which are coupled through the nonlinear nature of the governing equations of motion. A stochastic climate model resolves only a limited number of large-scale, low-frequency modes; the effect of unresolved scales and processes onto the resolved modes is accounted for by stochastic terms. Here, such low-order stochastic models are derived empirically from time series of the system using statistical parameter estimation techniques.

The first part of the talk deals with subgrid-scale parametrisation in atmospheric models. By combining a clustering algorithm with local regression fitting a stochastic closure model is obtained which is conditional on the state of the resolved variables. The method is illustrated on the Lorenz '96 system and then applied to a model of atmospheric low-frequency variability based on empirical orthogonal functions.

The second part of the talk is concerned with deriving simple dynamical models of glacial millennial-scale climate variability from ice-core records. Firstly, stochastically driven motion in a potential is adopted. The shape of the potential and the noise level are estimated from ice-core data using a nonlinear Kalman filter. Secondly, a mixture of linear stochastic processes conditional on the state of the system is used to model ice-core time series.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons