skip to content

On the Complexity of the Quartet Challenge

Presented by: 
S Linz [Tubingen]
Monday 20th June 2011 - 12:10 to 12:30
INI Seminar Room 1
A collection of quartets (unrooted phylogenetic trees on four taxa) is compatible if there exists a phylogenetic tree that explains all ancestral relationships given by the quartets. It is well-known that deciding whether or not a set of quartets is compatible is an NP-complete problem. A natural extension of this problem asks if, given a phylogenetic tree T that is compatible with the input, is T the only such tree. Several graph-theoretic characterizations have been established to approach this problem, which is known as the Quartet Challenge. However, the complexity of this challenge remains open. In this talk, we show that the Quartet Challenge is ASP-complete (i.e. it is computationally hard to decide whether another solution exists) by using a particular type of polynomial-time reduction from a variation of the Betweenness problem. This is joint work with Maria Luisa Bonet (UPC, Spain) and Katherine St. John (CUNY, USA).
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons