skip to content

Universal plane curve and moduli spaces of 1-dimensional coherent sheaves

Tuesday 28th June 2011 - 15:20 to 15:50
INI Seminar Room 1
We show that the universal plane curve M of degree d may be seen as a space of isomorphism classes of certain 1-dimensional coherent sheaves on the projective plane. The universal singular locus M' of M coincides with the subvariety of M consisting of sheaves that are not locally free on their support. It turns out that the blow up of M along M' may be naturally seen as a compactification of M_B=M\M' by vector bundles (on support).
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons