skip to content

Laplace transform integration and the slow equations

Wednesday 26th September 2012 - 11:35 to 12:00
INI Seminar Room 1
Session Title: 
Time Session
We consider the Laplace transform (LT) filtering integration scheme applied to the shallow water equations, and demonstrate how it can be formulated as a finite difference scheme in the time domain by analytical inversion of the transform.

Both Eulerian and semi-Lagrangian versions of the scheme are analyzed. We show the relationship between the LT scheme and the slow equations. We demonstrate the advantages of the LT scheme by means of numerical integrations.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons