skip to content
 

Thermally and mechanically driven quantum turbulence in helium II

Date: 
Monday 3rd December 2012 - 11:50 to 12:10
Venue: 
INI Seminar Room 1
Session Title: 
Topological evolution in quantum fluids
Session Chair: 
Keith Moffatt
Abstract: 
In most experiments with superfluid helium, turbulence is generated thermally (by applying a heat flux, as in thermal counterflow) or mechanically (by stirring the liquid). By modeling the superfluid vortex lines as reconnecting space curves with fixed circulation, and the driving normal fluid as a uniform flow (for thermal counterflow) and a synthetic turbulent flow (for mechanically driven turbulence), we determine the difference between thermally and mechanically driven quantum turbulence. We find that in mechanically driven turbulence, the energy is concentrated at the large scales, the spectrum obeys Kolmogorov scaling, vortex lines have large curvature, and the presence of coherent vortex structures induces vortex reconnections at small angles. On the contrary, in thermally driven turbulence, the energy is concentrated at the mesoscales, the curvature is smaller, the vorticity field is featureless, and reconnections occur at larger angles. Our results suggest a method t o experimentally detect the presence of superfluid vortex bundles.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons