skip to content
 

The Expected Total Curvature of Random Polygons

Date: 
Thursday 6th December 2012 - 09:40 to 10:00
Venue: 
INI Seminar Room 1
Session Title: 
Knots in mathematics: Tight Knots, etc.
Session Chair: 
Rob Kusner
Abstract: 
We consider the expected value for the total curvature of a random closed polygon. Numerical experiments have suggested that as the number of edges becomes large, the difference between the expected total curvature of a random closed polygon and a random open polygon with the same number of turning angles approaches a positive constant. We show that this is true for a natural class of probability measures on polygons, and give a formula for the constant in terms of the moments of the edgelength distribution.

We then consider the symmetric measure on closed polygons of fixed total length constructed by Cantarella, Deguchi, and Shonkwiler. For this measure, the expected total curvature of a closed n-gon is asymptotic to n pi/2 + pi/4 by our first result. With a more careful analysis, we are able to prove that the exact expected value of total curvature is n pi/2 + (2n/2n-3) pi/4. As a consequence, we show that at least 1/3 of fixed-length hexagons and 1/11 of fixed-length heptagons in 3-space are unknotted.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons