skip to content
 

High Dimensional Stochastic Regression with Latent Factors,Endogeneity and Nonlinearity

Date: 
Tuesday 14th January 2014 - 14:10 to 14:50
Venue: 
INI Seminar Room 1
Abstract: 
We consider a multivariate time series model which represents a high dimensional vector process as a sum of three terms: a linear regression of some observed regressors, a linear combination of some latent and serially correlated factors, and a vector white noise. We investigate the inference without imposing stationary conditions on the target multivariate time series, the regressors and the underlying factors. Furthermore we deal with the the endogeneity that there exist correlations between the observed regressors and the unobserved factors. We also consider the model with nonlinear regression term which can be approximated by a linear regression function with a large number of regressors. The convergence rates for the estimators of regression coefficients, the number of factors, factor loading space and factors are established under the settings when the dimension of time series and the number of regressors may both tend to infinity together with the sample size. The proposed method is illustrated with both simulated and real data examples.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons