skip to content
 

The Z-invariant massive Laplacian on isoradial graphs

Date: 
Friday 30th January 2015 - 11:30 to 12:30
Venue: 
INI Seminar Room 1
Abstract: 
Co-authors: Béatrice de Tilière (LPMA, UPMC), Kilian Raschel (LMPT, University of Tours)

Isoradial graphs form an interesting subset of planar graphs to study critical integrable models: the geometric properties of their embedding are related to the Yang-Baxter equation and allows one to develop a discrete theory of complex analysis.

After having reviewed some results about critical models on those graphs, we will define a massive Laplacian on isoradial graphs with integrability properties.

This massive Laplacian can be used to study off-criticality models from statistical mechanics on these infinite non-periodic graphs (e.g. spanning forests), for which local correlations are obtained, and phase transition as the mass vanishes can be studied analytically.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons