skip to content

Log-correlated Gaussian fields: study of the Gibbs measure

Thursday 19th March 2015 - 11:30 to 12:30
INI Seminar Room 1
Co-author: Louis-Pierre ARUIN (CUNY)

Gaussian fields with logarithmically decaying correlations, such as branching Brownian motion and the two-dimensional Gaussian free field, are conjectured to form universality class of extreme value statistics (notably in the work of Carpentier & Le Doussal and Fyodorov & Bouchaud). This class is the borderline case between the class of IID random variables, and models where correlations start to affect the statistics. In this talk, I will describe a general approach based on rigorous works in spin glass theory to describe features of the Gibbs measure of these Gaussian fields. I will focus on the two-dimensional discrete Gaussian free field. At low temperature, we show that the normalized covariance of two points sampled from the Gibbs measure is either 0 or 1. This is used to prove that the joint distribution of the Gibbs weights converges in a suitable sense to that of a Poisson-Dirichlet variable.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons