skip to content

Reflectionless property and related problems on 1D Schrödinger operators

Friday 10th April 2015 - 10:00 to 11:00
INI Seminar Room 1
Reflectionless property for 1D Schrödinger operators is defined by using their Weyl functions or Green functions. The property is especially important when potentials of Schrödinger operators are ergodic, and it is proved that the reflectionless property holds on their absolutely continuous spectra. On the other hand Remling showed the deterministic version. They are related to the shift operation of potentials. In this talk we discus the capability of its extension to KdV equation and propose several open problems.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons