skip to content

Homogeneous Spectrum for Limit-Periodic Operators

Friday 10th April 2015 - 16:00 to 16:25
INI Seminar Room 1
Co-author: Milivoje Lukic (University of Toronto)

We will discuss the spectra of limit-periodic Schr\"odinger operators. Specifically, the spectrum of a limit-periodic operator which obeys the Pastur-Tkachenko condition is homogeneous in the sense of Carleson. When combined with work of Gesztesy-Yuditskii, our theorem implies that the spectrum of a continuum Schr\"odinger operator with Pastur--Tkachenko potential has infinite gap length whenever the potential fails to be uniformly almost periodic.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons