skip to content

Osmosis, Electrophysiology and Cell Movement

Presented by: 
Yoichiro Mori
Thursday 16th July 2015 - 10:45 to 12:00
INI Seminar Room 1
Water movement in the biological tissue is controlled primarily by osmosis, and the primary osmolytes are ions (Na, K, Cl etc). It is then natural to think that electrophysiology is in some way related to cell movement. This indeed seems to be the case; there is mounting evidence that ion channels and aquaporins play an important role in cell movement. In this talk, we will first review some classical facts about electrophysiology, focusing on its role in cell volume control. We will also discuss the classical subject of fluid secretion/absorption in epithelial systems, and compare this with recent work on a mode of cell movement that seems to be predominantly osmotic. We will then present a mathematical framework that couples electrophysiology, osmosis and cell mechanics in a natural way that allows for the study of this interplay. We will show preliminary 2D computational results of a deforming model cell moving using osmotic forces.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons