skip to content

Filament Based Lamellipodium Model (FBLM) modeling and numerical simulations

Presented by: 
Nikolaos Sfakianakis
Tuesday 8th December 2015 - 14:15 to 15:00
INI Seminar Room 1
The cytoskeleton is a cellular skeleton inside the cytoplasm of living cells. The front of the cytoskeleton, also known as lamellipodium and is the driving mechanism of cell motility and is comprised by long double helix polymers of actin protein termed actin-filaments. The actin-filaments polymerize/depolymerize and exhibit a series of physical properties like elasticity, friction with the substrate, crosslink binding, repulsion, myosin-drive contractility, nucleation, fragmentation, capping and more.

In this talk we address the FBLM that describes the above (microspcopic) dynamics of the actin-filaments and results to the (macroscopic) movement of the cell. We introduce the Finite Element Method (FEM) used to simulate this system and present numerical experiments exhibiting the motility of the cells in a series biological scenaria (including chemotactic and haptotactic influence) and compare our results with on-vitro experiments.

Joint work(-s) with Chr. Schmeiser, D. Oelz, A. Manhart, V. Small

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons