skip to content

Statistical Relational Learning: Review and Recent Advances

Presented by: 
Lise Getoor University of California, Santa Cruz
Monday 25th July 2016 - 15:30 to 16:00
INI Seminar Room 1
Statistical relational learning (SRL) is a subfield of machine learning that combines relational representations (from databases and AI) with probabilistic modeling techniques (most often graphical models)for modeling network data (typically richly structured multi-relational and multi-model networks).  In this talk, I will briefly review some SRL modeling techniques, and then I will introduce hinge-loss Markov random fields (HL-MRFs), a new kind of probabilistic graphical model that supports scalable collective inference from richly structured data.  HL-MRFs unify three different approaches to convex inference: LP approximations for randomized algorithms, local relaxations for probabilistic graphical models, and inference in soft logic.  I will show that all three lead to the same inference objective.  This makes inference in HL-MRFs highly scalable.   Along the way, I will describe several successful applications of HL-MRFs and I will describe probabilistic soft logic, a declarative language for defining HL-MRFS.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons