skip to content

A classification of real-line group actions with faithful Connes--Takesaki modules on hyperfinite factors

Presented by: 
Koichi Shimada Kyoto University
Tuesday 24th January 2017 - 16:00 to 17:00
INI Seminar Room 1
  We classify certain real-line-group actions on (type III) hyperfinite factoers, up to cocycle conjugacy. More precisely, we show that an invariant called the Connes--Takesaki module completely distinguishs actions which are not approximately inner at any non-trivial point. Our classification result is related to the uniqueness of the hyperfinite type III_1 factor, shown by Haagerup, which is equivalent to the uniquness of real-line-group actions with a certain condition on the hyperfinite type II_{\infty} factor. We classify actions on hyperfinite type III factors with an analogous condition. The proof is based on Masuda--Tomatsu's recent work on real-line-group actions and the uniqueness of the hyperfinite type III_1 factor.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons