skip to content

Classification of free Araki-Woods factors

Presented by: 
Stefaan Vaes KU Leuven
Wednesday 25th January 2017 - 10:00 to 11:00
INI Seminar Room 1
Co-authors: Cyril Houdayer (Université Paris Sud) and Dimitri Shlyakhtenko (UCLA).
Free Araki-Woods factors are a free probability analog of the type III hyperfinite factors. They were introduced by Shlyakhtenko in 1996, who completely classified the free Araki-Woods factors associated with almost periodic orthogonal representations of the real numbers. I present a joint work with Houdayer and Shlyakhtenko in which we completely classify a large class of non almost periodic free Araki-Woods factors. The key technical result is a deformation/rigidity criterion for the unitary conjugacy of two faithful normal states on a von Neumann algebra.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons