skip to content

A geometric approach to constructing conformal nets

Presented by: 
James Tener University of California, Santa Barbara
Monday 27th March 2017 - 14:30 to 15:30
INI Seminar Room 1
Conformal nets and vertex operator algebras are distinct mathematical axiomatizations of roughly the same physical idea: a two-dimensional chiral conformal field theory. In this talk I will present recent work, based on ideas of André Henriques, in which local operators in conformal nets are realized as "boundary values" of vertex operators. This construction exhibits many features of conformal nets (e.g. subfactors, their Jones indices, and their fusion rules) in terms of vertex operator algebras, and I will discuss how this allows one to use Antony Wassermann's approach to calculating fusion rules in a broad class of examples.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons