skip to content

Coefficients for commutative K-theory

Presented by: 
Simon Gritschacher University of Oxford
Friday 31st March 2017 - 11:30 to 12:30
INI Seminar Room 1
Recently, the study of representation spaces has led to the definition of a new cohomology theory, called commutative K-theory. This theory is a refinement of classical topological K-theory. It is defined using vector bundles whose transition functions commute with each other whenever they are simultaneously defined. I will begin the talk by discussing some general properties of the „classifying space for commutativity in a Lie group“ introduced by Adem-Gomez. Specialising to the unitary groups, I will then show that the spectrum for commutative complex K-theory is precisely the ku-group ring of infinite complex projective space. Finally, I will present some results about the real variant of commutative K-theory.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons