skip to content

Hall algebras and Fukaya categories

Presented by: 
Peter Samuelson University of Edinburgh
Monday 26th June 2017 - 13:30 to 14:30
INI Seminar Room 1
(joint with Ben Cooper)

The multiplication in the Hall algebra of an abelian category is defined by "counting extensions of objects," and the representation theory of this algebra tends to be quite interesting (e.g. Ringel showed the Hall algebra of modules over a quiver is the quantum group). Recently, Burban and Schiffmann explicitly described the Hall algebra of coherent sheaves over an elliptic curve, and various authors have connected this algebra to symmetric functions, Hilbert schemes, torus knot homology, the Heisenberg category, and the skein algebra of the torus. Motivated by this last connection and homological mirror symmetry, we discuss some computations in progress involving the Hall algebra of the Fukaya category of a (topological) surface.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons