skip to content

Numerical study of solitary waves under continuous or fragmented ice plates

Presented by: 
Emilian I Parau University of East Anglia
Tuesday 8th August 2017 - 10:00 to 11:00
INI Seminar Room 1
Nonlinear hydroelastic waves travelling at the surface of an ideal fluid covered by a thin ice plate are presented. The continuous ice-plate model is based on the special Cosserat theory of hyperelastic shells satisfying Kirchoff's hypothesis. Two-dimensional solitary waves are computed using boundary integral methods and their evolution in time and stability is analysed using a pseudospectral method based on FFT and in the expansion of the Dirichlet-Neuman operator. Extensions of this problem including internal waves and three-dimensional waves will be considered.
When the ice-plate is fragmented, a new model is used by allowing the coefficient of the flexural rigidity to vary spatially.  The attenuation of solitary waves is studied by using two-dimensional simulations.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons