skip to content

Simple rules govern the patterns of Arctic sea ice melt ponds

Presented by: 
Predrag Popovic
Thursday 14th September 2017 - 14:00 to 14:30
INI Seminar Room 1
Co-authors: BB Cael (MIT), Mary Silber (University of Chicago), Dorian Abbot (University of Chicago)

Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, a question of modeling pond geometry remains unresolved. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, which we choose by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the pond width distribution is surpris ingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons