skip to content

PDE-based Algorithms for Convolution Neural Network

Presented by: 
Lars Ruthotto
Monday 30th October 2017 - 14:00 to 14:50
INI Seminar Room 1
This talk presents a new framework for image classification that exploits the relationship between the training of deep Convolution Neural Networks (CNNs) to the problem of optimally controlling a system of nonlinear partial differential equations (PDEs). This new interpretation leads to a variational model for CNNs, which provides new theoretical insight into CNNs and new approaches for designing learning algorithms. We exemplify the myriad benefits of the continuous network in three ways. First, we show how to scale deep CNNs across image resolutions using multigrid methods. Second, we show how to scale the depth of deep CNNS in a shallow-to-deep manner to gradually increase the flexibility of the classifier. Third, we analyze the stability of CNNs and present stable variants that are also reversible (i.e., information can be propagated from input to output layer and vice versa), which in combination allows training arbitrarily deep networks with limited computational resources. This is joint work with Eldad Haber (UBC), Lili Meng (UBC), Bo Chang (UBC), Seong-Hwan Jun (UBC), Elliot Holtham (Xtract Technologies)
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons