skip to content
 

An Introduction to the Mechanics of the Lasso

Presented by: 
Neil Ribe CNRS (Centre national de la recherche scientifique), Université Paris-Sud 11
Date: 
Thursday 30th November 2017 - 16:00 to 16:30
Venue: 
INI Seminar Room 1
Abstract: 
Co-authors: Pierre-Thomas Brun (Dept. of Chemical Engineering, Princeton University, Princeton, NJ USA), Basile Audoly (Laboratoire LMS, Ecole Polytechnique, Palaiseau, France)

Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences with its complex patterns or ‘tricks’. Its fundamental tool is the lasso, formed by passing one end of a rope through a small loop (the honda) at the other end. Here, we study the mechanics of the simplest rope trick, the Flat Loop, in which the rope is driven by the steady circular motion of the roper’s hand in a horizontal plane. We first consider the case of a fixed (non-sliding) honda. Noting that the rope’s shape is steady in the reference frame rotating with the hand, we analyse a string model in which line tension is balanced by the centrifugal force and the rope’s weight. We use numerical continuation to classify the steadily rotating solutions in a bifurcation diagram and analyse their stability. In addition to Flat Loops, we find planar ‘coat-hanger’ solutions, and whirling modes in which the loop collapses onto itself. Ne xt, we treat the more general case of a honda that can slide due to a finite coefficient of friction of the rope on itself. Using matched asymptotic expansions, we resolve the shape of the rope in the boundary layer near the honda where the rope’s bending stiffness cannot be neglected. We use this solution to derive a macroscopic criterion for the sliding of the honda in terms of the microscopic Coulomb static friction criterion. Our predictions agree well with rapid- camera observations of a professional trick roper and with laboratory experiments using a ‘robo-cowboy’.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons