skip to content

Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure

Presented by: 
Guy Bresler Massachusetts Institute of Technology
Tuesday 26th June 2018 - 09:00 to 09:45
INI Seminar Room 1
The prototypical high-dimensional statistics problem entails finding a structured signal in noise. Many of these problems exhibit a curious phenomenon: the amount of data needed by all known computationally efficient algorithms far exceeds what is needed for inefficient algorithms that search over all possible structures. A line of work initiated by Berthet and Rigollet in 2013 has aimed to explain these gaps by reducing from conjecturally hard problems in computer science. However, the delicate nature of average-case reductions has limited the applicability of this approach. In this work we introduce several new techniques to give a web of average-case reductions showing strong computational lower bounds based on the planted clique conjecture. These include tight lower bounds for Planted Independent Set, Planted Dense Subgraph, Sparse Spiked Wigner, Sparse PCA, as well as for new models that we introduce. Joint work with Matthew Brennan and Wasim Huleihel.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons