skip to content
 

Reduced Isotonic Regression

Presented by: 
Chao Gao University of Chicago
Date: 
Tuesday 26th June 2018 - 09:45 to 10:30
Venue: 
INI Seminar Room 1
Abstract: 
Consider an $n$-dimensional vector $X$ with mean $\theta^*$. In this talk, we consider $\theta^*$ that is both nondecreasing and has a piecewise constant structure. We establish the exact minimax rate of estimating such monotone functions, and thus give a non-trivial answer to an open problem in the shape-constrained analysis literature. The minimax rate involves an interesting iterated logarithmic dependence on the dimension. We then develop a penalized least-squares procedure for estimating $\theta^*$ adaptively. This estimator is shown to achieve the derived minimax rate without the knowledge of the number of pieces in linear time. We further allow the model to be misspecified and derive oracle inequalities with the optimal rates for the proposed estimator. This is a joint work with Fang Han and Cun-hui Zhang.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons