skip to content

Group invariance and computational sufficiency

Presented by: 
Vincent Vu Ohio State University
Friday 29th June 2018 - 09:45 to 10:30
INI Seminar Room 1
Statistical sufficiency formalizes the notion of data reduction. In the decision theoretic interpretation, once a model is chosen all inferences should be based on a sufficient statistic. However, suppose we start with a set of methods that share a sufficient statistic rather than a specific model. Is it possible to reduce the data beyond the statistic and yet still be able to compute all of the methods? In this talk, I'll present some progress towards a theory of "computational sufficiency" and show that strong reductions _can_ be made for large classes of penalized M-estimators by exploiting hidden symmetries in the underlying optimization problems. These reductions can (1) enable efficient computation and (2) reveal hidden connections between seemingly disparate methods. As a main example, I'll show how the theory provides a surprising answer to the following question: "What do the Graphical Lasso, sparse PCA, single-linkage clustering, and L1 penalized Ising model selection all have in common?"
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons