skip to content

Geometric descriptions of the Loewner energy

Presented by: 
Yilin Wang
Tuesday 17th July 2018 - 13:45 to 14:30
INI Seminar Room 1
The Loewner energy of a simple loop on the Riemann sphere is defined to be the Dirichlet energy of its driving function which is reminiscent in the SLE theory. It was shown in a joint work with Steffen Rohde that the definition is independent of the parametrization of the loop, therefore provides a Moebius invariant quantity on free loops which vanishes only on the circles. In this talk, I will present intrinsic interpretations of the Loewner energy (without involving the iteration of conformal distortions given by the Loewner flow), using the zeta-regularizations of determinants of Laplacians and show that the class of finite energy loops coincides with the Weil-Petersson class of the universal Teichmueller space.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons