skip to content
 

Distribution of gaussian multiplicative chaos on the unit interval

Presented by: 
Tunan Zhu
Date: 
Friday 20th July 2018 - 14:10 to 14:30
Venue: 
INI Seminar Room 1
Abstract: 
Starting from a log-correlated field one can define by a standard regularization technique the associated Gaussian multiplicative chaos (GMC) measure with density formally given by the exponential of the log-correlated field. Very recently exact formulas have been obtained for specific GMC measures. On the Riemann sphere a proof of the celebrated DOZZ formula has been given by Kupiainen-Rhodes-Vargas and for the GMC on the unit circle the Fyodorov-Bouchaud formula has been recently proven by Remy. In this talk we will present additional results on GMC measures associated to a log-correlated field on the unit interval [0,1]. We will present a very general formula for the real moments of the total mass of GMC with log-singularities in 0 and 1. This proves a set of conjectures given by Fyodorov, Le Doussal, Rosso and Ostrovsky. As a corollary, this gives the distribution of the total mass.




University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons