skip to content

Partially smoothed information measures

Presented by: 
Mario Berta
Thursday 26th July 2018 - 11:00 to 11:45
INI Seminar Room 1
Smooth entropies are a tool for quantifying resource trade-offs in (quantum) information theory and cryptography. In typical bi- and multi-partite problems, however, some of the sub-systems are often left unchanged and this is not reflected by the standard smoothing of information measures over a ball of close states. We propose to smooth instead only over a ball of close states which also have some of the reduced states on the relevant sub-systems fixed. This partial smoothing of information measures naturally allows to give more refined characterizations of various information-theoretic problems in the one-shot setting. In particular, we immediately get asymptotic second-order characterizations for tasks such as privacy amplification against classical side information or classical state splitting. For quantum problems like state merging the general resource trade-off is tightly characterized by partially smoothed information measures as well. However, for quantum systems we can so far only give the asymptotic first-order expansion of these quantities.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons