skip to content

Transmission capacity allocation in zonal electricity markets

Presented by: 
Anthony Papavasiliou
Wednesday 9th January 2019 - 11:30 to 12:30
INI Seminar Room 1
Session Title: 
Markets & System Operation
We propose a novel framework for modelling zonal electricity markets, based on projecting the constraints of the nodal network onto the space of the zonal aggregation of the network. The framework avoids circular definitions and discretionary parameters, which are recurrent in the implementation and study of zonal markets. Using this framework, we model and analyze two zonal market designs currently present in Europe: flow-based market coupling (FBMC) and available-transfer-capacity market coupling (ATCMC). We develop cutting-plane algorithms for simulating FBMC and ATCMC while accounting for robustness of imports/exports to single element failures, and we conduct numerical simulations of FBMC and ATCMC for a realistic instance of the Central Western European system under 768,000 different operating conditions. We find that FBMC and ATCMC are unable to anticipate congestion of branches interconnecting zones and branches within zones, and that both zonal designs achieve similar overall cost efficiencies 0.5% difference in favour of FBMC), while a nodal market design largely outperforms both of them (5.9% better than FBMC). These findings raise the question of whether it is worth for more European countries to switch from ATCMC to FBMC, instead of advancing directly towards a nodal design.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
Presentation Material: 
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons