skip to content

Numerical preservation of local conservation laws

Presented by: 
Gianluca Frasca-Caccia
Wednesday 11th September 2019 - 15:00 to 16:00
INI Seminar Room 2
In the numerical treatment of partial differential equations (PDEs), the benefits of preserving global integral invariants are well-known. Preserving the underlying local conservation law gives, in general, a stricter constraint than conserving the global invariant obtained by integrating it in space. Conservation laws, in fact, hold throughout the domain and are satisfied by all solutions, independently of initial and boundary conditions. A new approach that uses symbolic algebra to develop bespoke finite difference schemes that preserve multiple local conservation laws has been recently applied to PDEs with polynomial nonlinearity. The talk illustrates this new strategy using some well-known equations as benchmark examples and shows comparisons between the obtained schemes and other integrators known in literature.

The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons