skip to content

On self-Mullineux and self-conjugate partitions

Presented by: 
Ana Bernal
Thursday 9th January 2020 - 16:30 to 17:00
INI Seminar Room 1
The Mullineux involution is a relevant map that appears in the study of the modular representations of the symmetric group and the alternating group. The fixed points of this map are certain partitions of particular interest. It is known that the cardinality of the set of these self-Mullineux partitions is equal to the cardinality of a distinguished subset of self-conjugate partitions. In this talk we will see details on this, on the Mullineux map and I will show an explicit bijection between the two mentioned families of partitions in terms of the Mullineux symbol.
The video for this talk should appear here if JavaScript is enabled.
If it doesn't, something may have gone wrong with our embedded player.
We'll get it fixed as soon as possible.
University of Cambridge Research Councils UK
    Clay Mathematics Institute London Mathematical Society NM Rothschild and Sons